

FINAL JEE-MAIN EXAMINATION – SEPTEMBER, 2020

(On Thursday 03rd SEPTEMBER, 2020) TIME: 9 AM to 12 PM

MATHEMATICS

- 1. A die is thrown two times and the sum of the scores appearing on the die is observed to be a multiple of 4. Then the conditional probability that the score 4 has appeared atleast once is:
 - $(1) \frac{1}{8}$
- (2) $\frac{1}{9}$
- (3) $\frac{1}{2}$

Official Ans. by NTA (2)

2. The lines

$$\vec{r} = (\hat{i} - \hat{i}) + \ell(2\hat{i} + \hat{k})$$
 and

$$\vec{\mathbf{r}} = (2\hat{\mathbf{i}} - \hat{\mathbf{j}}) + \mathbf{m}(\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$$

- (1) Intersect when $\ell = 1$ and m = 2
- (2) Intersect when $\ell = 2$ and $m = \frac{1}{2}$
- (3) Do not intersect for any values of ℓ and m
- (4) Intersect for all values of ℓ and m

Official Ans. by NTA (3)

- **3.** The foot of the perpendicular drawn from the point (4, 2, 3) to the line joining the points (1, -2, 3) and (1, 1, 0) lies on the plane:
 - (1) x + 2y z = 1 (2) x 2y + z = 1

 - (3) x y 2z = 1 (4) 2x + y z = 1

Official Ans. by NTA (4)

- 4. A hyperbola having the transverse axis of length $\sqrt{2}$ has the same foci as that of the ellipse $3x^2 + 4y^2 = 12$, then this hyperbola does not pass through which of the following points?

 - $(1) \left(1, -\frac{1}{\sqrt{2}}\right) \qquad (2) \left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$

 - $(3) \left(\frac{1}{\sqrt{2}}, 0\right) \qquad (4) \left(-\sqrt{\frac{3}{2}}, 1\right)$

Official Ans. by NTA (2)

TEST PAPER WITH ANSWER

- The area (in sq. units) of the region $\{(x, y) : 0 \le y \le x^2 + 1, 0 \le y \le x + 1,$ $\frac{1}{2} \le x \le 2$ is:
 - $(1) \frac{79}{16}$
- (2) $\frac{23}{6}$

Official Ans. by NTA (3)

If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is:

7.

Official Ans. by NTA (4)

Let P be a point on the parabola, $y^2 = 12x$ and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of PN, parallel to its axis which meets the parabola at Q. If the

y-intercept of the line NQ is $\frac{4}{3}$, then:

- (1) MQ = $\frac{1}{3}$
- (2) PN = 3
- (3) MQ = $\frac{1}{4}$
- (4) PN = 4

Official Ans. by NTA (3)

8. For the frequency distribution:

Variate (x):

$$X_1 \qquad X_2 \qquad X_3 \dots X_{15}$$

Frequency (f): f_1 f_2 f_3 f_{15}

$$f_2$$

$$f_2$$
 f_3

where $0 < x_1 < x_2 < x_3 < \dots < x_{15} = 10$ and

 $\sum_{i=1}^{15} f_i > 0$, the standard deviation cannot be :

(1) 2

(2) 1

(3) 4

(4) 6

Official Ans. by NTA (4)

- $\int_{0}^{\infty} |\pi |x| dx \text{ is equal to :}$
 - (1) π^2
- (3) $\sqrt{2}\pi^2$

Official Ans. by NTA (1)

10. Consider the two sets:

 $A = \{m \in R : both the roots of \}$

 $x^2 - (m + 1)x + m + 4 = 0$ are real} and

B = [-3, 5).

Which of the following is not true?

- (1) A B = $(-\infty, -3) \cup (5, \infty)$
- (2) $A \cap B = \{-3\}$
- (3) B A = (-3, 5)
- (4) $A \cup B = R$

Official Ans. by NTA (1)

- If $y^2 + \log_e(\cos^2 x) = y$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then: 11.
 - (1) |y''(0)| = 2
- (2) |y'(0)| + |y''(0)| = 3
- (3) |y'(0)| + |y''(0)| = 1 (4) y''(0) = 0

Official Ans. by NTA (1)

- The function, $f(x) = (3x 7)x^{2/3}$, $x \in \mathbb{R}$, is **12.** increasing for all x lying in:
 - $(1) (-\infty, 0) \cup \left(\frac{3}{7}, \infty\right)$
 - $(2) (-\infty, 0) \cup \left(\frac{14}{15}, \infty\right)$
 - $(3) \left(-\infty, \frac{14}{15}\right)$
 - $(4)\left(-\infty,-\frac{14}{15}\right)\cup(0,\,\infty)$

Official Ans. by NTA (2)

- 13. The value of $(2.^{1}P_{0} 3.^{2}P_{1} + 4.^{3}P_{2}$ up to 51^{th} term) + $(1! - 2! + 3! - \dots$ up to 51^{th} term) is equal to:
 - (1) 1 + (51)!
- (2) 1 51(51)!
- (3) 1 + (52)!
- (4) 1

Official Ans. by NTA (3)

If
$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix} =$$

 $Ax^3 + Bx^2 + Cx + D$, then B + C is equal to:

(1) -1

14.

- (2) 1
- (3) -3
- (4) 9

Official Ans. by NTA (3)

15. The solution curve of the differential equation,

 $(1 + e^{-x}) (1 + y^2) \frac{dy}{dx} = y^2$, which passes

through the point (0, 1), is:

(1)
$$y^2 = 1 + y \log_e \left(\frac{1 + e^x}{2} \right)$$

(2)
$$y^2 + 1 = y \left(log_e \left(\frac{1 + e^x}{2} \right) + 2 \right)$$

(3)
$$y^2 = 1 + y \log_e \left(\frac{1 + e^{-x}}{2} \right)$$

(4)
$$y^2 + 1 = y \left(\log_e \left(\frac{1 + e^{-x}}{2} \right) + 2 \right)$$

Official Ans. by NTA (1)

- **16.** If the number of integral terms in the expansion of $(3^{1/2} + 5^{1/8})^n$ is exactly 33, then the least value of n is:
 - (1) 264
- (2) 256
- (3) 128
- (4) 248

Official Ans. by NTA (2)

17. If α and β are the roots of the equation

 $x^2 + px + 2 = 0$ and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of

the equation $2x^2 + 2qx + 1 = 0$, then

$$\left(\alpha - \frac{1}{\alpha}\right) \left(\beta - \frac{1}{\beta}\right) \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$$
 is equal to:

- (1) $\frac{9}{4}(9 + p^2)$ (2) $\frac{9}{4}(9 q^2)$
- (3) $\frac{9}{4}$ (9 p²) (4) $\frac{9}{4}$ (9 + q²)

Official Ans. by NTA (3)

Let [t] denote the greatest integer \leq t. If for some

 $\lambda \in R - \{0, 1\}, \lim_{x \to 0} \left| \frac{1 - x + |x|}{\lambda - x + |x|} \right| = L$, then L is

equal to:

(1) 1

(2) 2

- (3) $\frac{1}{2}$
- (4) 0

Official Ans. by NTA (2)

- 19. $2\pi \left(\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}\right)$ is equal to:
- (2) $\frac{5\pi}{4}$
- $(4) \frac{\pi}{2}$

Official Ans. by NTA (3)

- 20. The proposition $p \rightarrow \sim (p \land \sim q)$ is equivalent
 - $(1) (\sim p) \vee q$
- (2) q
- $(3) (\sim p) \wedge q$
- $(4) (~p) \lor (~q)$

Official Ans. by NTA (1)

21. Let $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$, $x \in R$ and $A^4 = [a_{ij}]$. If

 $a_{11} = 109$, then a_{22} is equal to _____.

Official Ans. by NTA (10)

If
$$\lim_{x\to 0} \left\{ \frac{1}{x^8} \left(1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right) \right\} = 2^{-k},$$

then the value of k is _____.

Official Ans. by NTA (8)

23. The diameter of the circle, whose centre lies on the line x + y = 2 in the first quadrant and which touches both the lines x = 3 and y = 2, is

Official Ans. by NTA (3)

24. The value of $(0.16)^{\log_{2.5} \left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + ... \text{to } \infty\right)}$ is equal to _____ .

Official Ans. by NTA (4)

25. If
$$\left(\frac{1+i}{1-i}\right)^{\frac{m}{2}}=\left(\frac{1+i}{i-1}\right)^{\frac{n}{3}}=1$$
, $(m,\ n\in N)$ then the

greatest common divisor of the least values of m and n is ______ .

