

FINAL JEE-MAIN EXAMINATION – SEPTEMBER, 2020

(Held On Friday 04th SEPTEMBER, 2020) TIME: 3 PM to 6 PM

- The function $f(x) = \begin{cases} \frac{\pi}{4} + \tan^{-1} x, |x| \le 1 \\ \frac{1}{2} (|x| 1), |x| > 1 \end{cases}$ is : 1.
 - (1) continuous on R-{1} and differentiable on $R - \{-1, 1\}.$
 - (2) both continuous and differentiable on $R - \{-1\}.$
 - (3) continuous on $R \{-1\}$ and differentiable on $R - \{-1, 1\}$.
 - (4) both continuous and differentiable on $R - \{1\}$

Official Ans. by NTA (1)

Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T$, where each X_i contains 10

elements and each Y_i contains 5 elements. If each element of the set T is an element of exactly 20 of sets X_i 's and exactly 6 of sets Y_i 's, then n is equal to:

- (1) 45
- (2) 15
- (3) 50
- (4) 30

Official Ans. by NTA (4)

Let $\lambda \neq 0$ be in R. If α and β are the roots of **3**. the equation, $x^2 - x + 2\lambda = 0$ and α and γ are the roots of the equation, $3x^2-10x+27\lambda = 0$,

then $\frac{\beta\gamma}{\lambda}$ is equal to :

- (1) 36
- (2) 27

(3) 9

(4) 18

Official Ans. by NTA (4)

The solution of the differential equation

$$\frac{dy}{dx} - \frac{y+3x}{\log_e(y+3x)} + 3 = 0$$
 is :-

(where C is a constant of integration.)

- (1) $x-2 \log_{e}(y+3x)=C$
- (2) $x \log_{e}(y + 3x) = C$

(3)
$$x - \frac{1}{2} (\log_e(y + 3x))^2 = C$$

(4)
$$y + 3x - \frac{1}{2} (\log_e x)^2 = C$$

Official Ans. by NTA (3)

- 5. Let a_1 , a_2 ..., a_n be a given A.P. whose common difference is an integer and $S_n = a_1 + a_2 + ... + a_n$. If $a_1 = 1$, $a_n = 300$ and $15 \le n \le 50$, then the ordered pair $(S_{n-4}a_{n-4})$ is equal to :
 - (1) (2480, 249)
- (2) (2490, 249)
- (3) (2490, 248)
- (4) (2480, 248)

Official Ans. by NTA (3)

The distance of the point (1, -2, 3) from the 6. plane x-y+z = 5 measured parallel to the line

$$\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$$
 is:

- (1) 7 (2) 1 (3) $\frac{1}{7}$ (4) $\frac{7}{5}$

Official Ans. by NTA (2)

Let $f:(0, \infty) \to (0, \infty)$ be a differentiable 7. function such that f(1) = e and

$$\lim_{t \to x} \frac{t^2 f^2(x) - x^2 f^2(t)}{t - x} = 0$$

If f(x) = 1, then x is equal to :

- (1) 2e (2) $\frac{1}{2e}$ (3) e (4) $\frac{1}{e}$

Official Ans. by NTA (4)

8. If the system of equations

$$x + y + z = 2$$

$$2x + 4y - z = 6$$

$$3x + 2y + \lambda z = \mu$$

has infinitely many solutions, then:

- $(1) \lambda 2\mu = -5$
- (2) $2\lambda \mu = 5$
- (3) $2\lambda + \mu = 14$
- (4) $\lambda + 2\mu = 14$

Official Ans. by NTA (3)

- 9. The minimum value of $2^{\sin x} + 2^{\cos x}$ is :-
 - $(1) \ 2^{1-\frac{1}{\sqrt{2}}}$

Official Ans. by NTA (1)

10. $\int_{\pi/2}^{\pi/3} \tan^3 x \cdot \sin^2 3x (2 \sec^2 x \cdot \sin^2 3x + 3 \tan x \cdot \sin 6x) dx$

is equal to:

- (1) $\frac{9}{2}$ (2) $-\frac{1}{9}$ (3) $-\frac{1}{18}$ (4) $\frac{7}{18}$

Official Ans. by NTA (3)

- The circle passing through the intersection of 11. the circles, $x^2 + y^2 - 6x = 0$ and $x^2 + y^2 - 4y = 0$, having its centre on the line, 2x - 3y + 12 = 0, also passes through the point:
 - (1)(1, -3)
- (2)(-1,3)
- (3)(-3,1)
- (4) (-3, 6)

Official Ans. by NTA (4)

- The angle of elevation of a cloud C from a point **12.** P, 200 m above a still lake is 30°. If the angle of depression of the image of C in the lake from the point P is 60°, then PC (in m) is equal to:
 - (1) 400
- (2) $400\sqrt{3}$
- (3) 100
- (4) $200\sqrt{3}$

Official Ans. by NTA (1)

- **13.** If a and b are real numbers such that
 - $(2 + \alpha)^4 = a + b\alpha$, where $\alpha = \frac{-1 + i\sqrt{3}}{2}$, then

a + b is equal to:

- (1) 57
- (2) 33
- (3) 24
- (4) 9

Official Ans. by NTA (4)

- 14. In a game two players A and B take turns in throwing a pair of fair dice starting with player A and total of scores on the two dice, in each throw is noted. A wins the game if he throws a total of 6 before B throws a total of 7 and B wins the game if he throws a total of 7 before A throws a total of six The game stops as soon as either of the players wins. The probability of A winning the game is:

- (1) $\frac{31}{61}$ (2) $\frac{5}{6}$ (3) $\frac{5}{31}$ (4) $\frac{30}{61}$

Official Ans. by NTA (4)

Let x = 4 be a directrix to an ellipse whose

centre is at the origin and its eccentricity is $\frac{1}{2}$.

If P $(1, \beta)$, $\beta > 0$ is a point on this ellipse, then the equation of the normal to it at P is :-

- (1) 7x 4y = 1
- (2) 4x 2y = 1
- (3) 4x 3y = 2
 - (4) 8x 2y = 5

Official Ans. by NTA (2)

16. Contrapositive of the statement:

> 'If a function f is differentiable at a, then it is also continuous at a', is :-

- (1) If a function f is continuous at a, then it is not differentiable at a.
- (2) If a function f is not continuous at a, then it is differentiable at a.
- (3) If a function f is not continuous at a, then it is not differentiable at a.
- (4) If a function f is continuous at a, then it is differentiable at a.

Official Ans. by NTA (3)

- **17.** The area (in sq. units) of the largest rectangle ABCD whose vertices A and B lie on the x-axis and vertices C and D lie on the parabola, $y= x^2 -1$ below the x-axis, is:
 - (1) $\frac{4}{3\sqrt{3}}$ (2) $\frac{1}{3\sqrt{3}}$ (3) $\frac{4}{3}$ (4) $\frac{2}{3\sqrt{3}}$

Official Ans. by NTA (1)

If for some positive integer n, the coefficients **18.** of three consecutive terms in the binomial expansion of $(1+x)^{n+5}$ are in the ratio 5:10:14, then the largest coefficient in this expansion is :-

(1)792(2) 252(3) 462 (4) 330 Official Ans. by NTA (3)

If the perpendicular bisector of the line segment **19.** joining the points P (1, 4) and Q (k, 3) has yintercept equal to -4, then a value of k is :-

(1) $\sqrt{15}$ (2) -2 $(3) \sqrt{14} \qquad (4) -4$

Official Ans. by NTA (4)

20. Suppose the vectors x_1 , x_2 and x_3 are the solutions of the system of linear equations, Ax = b when the vector b on the right side is equal to b₁, b₂ and b₃ respectively. If

$$x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$b_2 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$
 and $b_3 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$, then the determinant of

A is equal to :-

- (1) $\frac{1}{2}$ (2) 4 (3) $\frac{3}{2}$
- (4) 2

Official Ans. by NTA (4)

21. A test consists of 6 multiple choice questions, each having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is

Official Ans. by NTA (135)

22. Let PQ be a diameter of the circle $x^2+y^2=9$. If α and β are the lengths of the perpendiculars from P and Q on the straight line, x + y = 2respectively, then the maximum value of $\alpha\beta$ is

Official Ans. by NTA (7)

- 23. Let $\{x\}$ and [x] denote the fractional part of x and the greatest integer $\leq x$ respectively of a real number x. If $\int_0^n \{x\} dx$, $\int_0^n [x] dx$ and $10(n^2 - n)$, $(n \in N, n > 1)$ are three consecutive terms of a G.P., then n is equal to_____ Official Ans. by NTA (21)
- $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k},$ then the value 24. $|\hat{\mathbf{i}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}})|^2 + |\hat{\mathbf{j}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{j}})|^2 + |\hat{\mathbf{k}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{k}})|^2$ is equal Official Ans. by NTA (18)

If the variance of the following frequency 25. distribution:

Class : 10-20 20 - 3030 - 40Frequency: 2 is 50, then x is equal to ____ Official Ans. by NTA (4)