

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020 (On Friday 04th SEPTEMBER, 2020) TIME: 9 AM to 12 PM

MATHEMATICS

1. If
$$A = \begin{bmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{bmatrix}$$
, $\theta = \frac{\pi}{24}$ and

$$A^5 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ where } i = \sqrt{-1} \text{ , then which one }$$

of the following is not true?

(1)
$$0 \le a^2 + b^2 \le 1$$
 (2) $a^2 - d^2 = 0$

$$(2) a^2 - d^2 = 0$$

(3)
$$a^2 - b^2 = \frac{1}{2}$$
 (4) $a^2 - c^2 = 1$

$$(4) a^2 - c^2 =$$

Official Ans. by NTA (3)

- 2. Let [t] denote the greatest integer \leq t. Then the equation in x, $[x]^2 + 2[x + 2] - 7 = 0$ has:
 - (1) no integral solution
 - (2) exactly four integral solutions
 - (3) exactly two solutions
 - (4) infinitely many solutions

Official Ans. by NTA (4)

- Let α and β be the roots of $x^2 3x + p = 0$ and **3**. γ and δ be the roots of $x^2 - 6x + q = 0$. If α , β , γ , δ form a geometric progression. Then ratio (2q + p) : (2q - p) is :
 - (1) 3 : 1
- (2) 33 : 31
- (3) 9 : 7
- (4) 5 : 3

Official Ans. by NTA (3)

- Let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) be a given ellipse, 4. length of whose latus rectum is 10. If its eccentricity is the maximum value of the function, $\phi(t) = \frac{5}{12} + t - t^2$, then $a^2 + b^2$ is equal to:
 - (1) 126
- (2) 135
- (3) 145
- (4) 116

Official Ans. by NTA (1)

TEST PAPER WITH ANSWER

- A triangle ABC lying in the first quadrant has two vertices as A(1, 2) and B(3, 1). If $\angle BAC = 90^{\circ}$, and $ar(\triangle ABC) = 5\sqrt{5}$ sq. units, then the abscissa of the vertex C is:
 - (1) $2+\sqrt{5}$
- (2) $1+\sqrt{5}$
- $(3) 1 + 2\sqrt{5}$
- $(4) \ 2\sqrt{5} 1$

Official Ans. by NTA (3)

6. Let f(x) = |x - 2| and $g(x) = f(f(x)), x \in [0, 4]$.

Then $\int (g(x) - f(x)) dx$ is equal to:

- (2) 0
- (4) 1

Official Ans. by NTA (4)

- 7. Given the following two statements:
 - $(S_1): (q \lor p) \to (p \leftrightarrow \sim q)$ is a tautology.
 - (S_2) : $\sim q \wedge (\sim p \leftrightarrow q)$ is a fallacy.

Then:

- (1) only (S_1) is correct.
- (2) both (S_1) and (S_2) are correct.
- (3) both (S_1) and (S_2) are not correct.
- (4) only (S_2) is correct.

Official Ans. by NTA (3)

8. Let P(3, 3) be a point on the hyperbola,

 $\frac{x^2}{2} - \frac{y^2}{1.2} = 1$. If the normal to it at P intesects

the x-axis at (9, 0) and e is its eccentricity, then the ordered pair (a², e²) is equal to:

- $(1) \left(\frac{9}{2}, 3\right) \qquad (2) \left(\frac{9}{2}, 2\right)$
- $(3) \left(\frac{3}{2}, 2\right)$
- (4) (9, 3)

Official Ans. by NTA (1)

9. Let $f(x) = \int \frac{\sqrt{x}}{(1+x)^2} dx (x \ge 0)$. Then f(3) - f(1)

is equal to:

- $(1) -\frac{\pi}{6} + \frac{1}{2} + \frac{\sqrt{3}}{4}$ $(2) \frac{\pi}{6} + \frac{1}{2} \frac{\sqrt{3}}{4}$
- (3) $-\frac{\pi}{12} + \frac{1}{2} + \frac{\sqrt{3}}{4}$ (4) $\frac{\pi}{12} + \frac{1}{2} \frac{\sqrt{3}}{4}$

Official Ans. by NTA (4)

- **10.** A survey shows that 63% of the people in a city read newspaper A whereas 76% read newspaper B. If x% of the people read both the newspapers, then a possible value of x can be:
 - (1) 65
- (2) 37
- (3) 29
- (4) 55

Official Ans. by NTA (4)

11. Let $u = \frac{2z+i}{z-ki}$, z = x + iy and k > 0. If the curve

represented by Re(u) + Im(u) = 1 intersects the y-axis at the points P and Q where PQ = 5, then the value of k is:

- (1) 3/2
- (2) 4

(3) 2

(4) 1/2

Official Ans. by NTA (3)

12. Let x_0 be the point of local maxima of $f(x) = \vec{a} \cdot (\vec{b} \times \vec{c})$, where $\vec{a} = x\hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = -2\hat{i} + x\hat{j} - \hat{k}$ and $\vec{c} = 7\hat{i} - 2\hat{j} + x\hat{k}$. Then the

value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ at $x = x_0$ is :

(1) -30

- (2) 14
- (3) -4
- (4) -22

Official Ans. by NTA (4)

- 13. Two vertical poles AB = 15 m and CD = 10 mare standing apart on a horizontal ground with points A and C on the ground. If P is the point of intersection of BC and AD, then the height of P (in m) above the line AC is:
 - (1) 20/3
- (2) 5
- (3) 10/3
- (4) 6

Official Ans. by NTA (4)

- 14. The mean and variance of 8 observations are 10 and 13.5, respectively. If 6 of these observations are 5, 7, 10, 12, 14, 15, then the absolute difference of the remaining two observations is:
 - (1) 7

(2) 3

(3) 5

(4)9

Official Ans. by NTA (1)

The integral $\int \left(\frac{x}{x \sin x + \cos x}\right)^2 dx$ is equal to: 15.

(where C is a constant of integration)

(1)
$$\sec x + \frac{x \tan x}{x \sin x + \cos x} + C$$

(2)
$$\sec x - \frac{x \tan x}{x \sin x + \cos x} + C$$

(3)
$$\tan x + \frac{x \sec x}{x \sin x + \cos x} + C$$

(4)
$$\tan x - \frac{x \sec x}{x \sin x + \cos x} + C$$

Official Ans. by NTA (4)

16. If

> $1+(1-2^2.1)+(1-4^2.3)+(1-6^2.5)+....+(1-20^2.19)$ = $\alpha - 220\beta$, then an ordered pair (α, β) is equal to:

- (1) (10, 97)
- (2) (11, 103)
- (3) (10, 103)
- (4) (11, 97)

Official Ans. by NTA (2)

17. Let y = y(x) be the solution of the differential equation, $xy' - y = x^2(x \cos x + \sin x), x > 0$.

If $y(\pi) = \pi$, then $y''\left(\frac{\pi}{2}\right) + y\left(\frac{\pi}{2}\right)$ is equal to:

- (1) $2 + \frac{\pi}{2}$
- (2) $1 + \frac{\pi}{2}$
- (3) $1 + \frac{\pi}{2} + \frac{\pi^2}{4}$ (4) $2 + \frac{\pi}{2} + \frac{\pi^2}{4}$ [UP]

Official Ans. by NTA (1)

- The value of $\sum_{r=0}^{20} {}^{50-r}C_6$ is equal to : 18.
 - (1) ${}^{51}C_7 + {}^{30}C_7$ (2) ${}^{51}C_7 {}^{30}C_7$
 - (3) ${}^{50}\text{C}_7 {}^{30}\text{C}_7$ (4) ${}^{50}\text{C}_6 {}^{30}\text{C}_6$

Official Ans. by NTA (2)

- Let f be a twice differentiable function on **19.** (1, 6). If f(2) = 8, f'(2) = 5, $f'(x) \ge 1$ and $f''(x) \ge 4$, for all $x \in (1, 6)$, then:
 - $(1) f(5) \le 10$
- $(2) f'(5) + f''(5) \le 20$
- $(3) f(5) + f'(5) \ge 28$
- $(4) f(5) + f'(5) \le 26$

Official Ans. by NTA (3)

If $(a + \sqrt{2} b\cos x)(a - \sqrt{2} b\cos y) = a^2 - b^2$, 20.

where a > b > 0, then $\frac{dx}{dv}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is :

- (1) $\frac{a-b}{a+b}$
- (2) $\frac{a+b}{a-b}$
- (3) $\frac{2a+b}{2a-b}$
- (4) $\frac{a-2b}{a+2b}$

Official Ans. by NTA (2)

If the system of equations

x - 2y + 3z = 9

2x + y + z = b

x - 7y + az = 24,

has infinitely many solutions, then a - b is equal

Official Ans. by NTA (5)

The probability of a man hitting a target is $\frac{1}{10}$. 22.

> The least number of shots required, so that the probability of his hitting the target at least once

is greater than $\frac{1}{4}$, is _____.

Official Ans. by NTA (3)

23. Suppose a differentiable function f(x) satisfies the identity $f(x + y) = f(x) + f(y) + xy^2 + x^2y$,

for all real x and y. If $\lim_{x \to 0} \frac{f(x)}{y} = 1$, then f'(3)

is equal to _____

Official Ans. by NTA (10)

Let $(2x^2 + 3x + 4)^{10} = \sum_{r=0}^{20} a_r x^r$. Then $\frac{a_7}{a_{12}}$ is

equal to _____

Official Ans. by NTA (8)

25. If the equation of a plane P, passing through the intesection of the planes, x + 4y - z + 7 = 0 and 3x + y + 5z = 8 is ax + by + 6z = 15 for some a, $b \in R$, then the distance of the point (3, 2, -1) from the plane P is _____.

Official Ans. by NTA (3)