PRACTICE QUESTIONS- MARKING SCHEME
 CLASS X
 SUBJECT: MATHEMATICS (STANDARD)

SECTION A - Multiple Choice Questions of 1 mark each.

Question number	Answer key
1	B
2	C
3	C
4	B
5	D
6	C
7	D
8	B
9	C
10	B
11	C
12	B
13	C
14	B
15	B
16	A
17	B
18	B
19	C
20	D

SECTION B - Very short answer questions of 2 marks each.

Q. no	Expected answer	Marks

21	Solves any two equations to get their point of intersection as $(4,-7)$. Substitutes the coordinates $(4,-7)$ in the third equation and shows that they satisfy it. Hence, concludes that the three lines intersect at a common point.	1
22	Writes that the angle subtended by arc NP at the centre is double the angle subtended at the circumference and finds the measure of $\angle \mathrm{NOP}$ as $2 \times 25^{\circ}=50^{\circ}$. Writes that the radius is perpendicular to the tangent at the point of contact and finds the measure of $\angle \mathrm{ONQ}$ as 90°. Writes that sum of angles of a triangle is 180° and finds the measure of $\angle O Q N$ as $180^{\circ}-\left(50^{\circ}+90^{\circ}\right)=40^{\circ}$.	0.5

\begin{tabular}{|c|c|c|}
\hline 23 \& \begin{tabular}{l}
Finds that the two numbers are of the form \(101 p\) and \(101 q\) where \(p>q\) and \(p\) and \(q\) are co-prime to each other. \\
Uses the given information and writes:
\[
\begin{aligned}
\& 101 p-101 q=303 \\
\& \Rightarrow 101(p-q)=303 \\
\& \Rightarrow p-q=3 \\
\& \Rightarrow p=q+3
\end{aligned}
\] \\
Identifies that the smallest 4-digit number can be found when \(q\) and \(p\) are 10 and 13 respectively. Finds the two numbers as 1010 and 1313.
\end{tabular} \& 0.5
0.5

1

\hline 24 \& | Writes $(A+2 B)=90^{\circ}$, as $\cos 90^{\circ}=0$. |
| :--- |
| Writes $(B-A)=30^{\circ}$, as $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$. |
| Subtracts $(B-A)$ from $(A+2 B)$ to get $(2 A+B)=60^{\circ}$. |
| Writes that $\operatorname{cosec} 60^{\circ}=\frac{2}{\sqrt{3}}$. |
| OR |
| i) Writes that the statement is false. |
| Gives a reason. For example, $\tan \theta=\frac{\sin \theta}{\cos \theta}$. So, since $\tan \theta$ is directly proportional to $\sin \theta$. In the given interval $\left(0^{\circ}<\theta<90^{\circ}\right)$, as the value of $\sin \theta$ increases, the value of $\cos \theta$ decreases and hence the value of $\tan \theta$ increases. |
| ii) Writes that the statement is false. |
| Gives a reason. For example, as $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$, the cosecant function is inversely proportional to the sine function. So, when the value of $\sin \theta$ is maximum, the value of $\operatorname{cosec} \theta$ will be minimum. | \& 0.5

0.5
0.5
0.5

0.5
0.5
0.5

0.5
0.5

\hline 25 \& Draws a rough figure using the given information. The figure may look as follows: \& 0.5

\hline
\end{tabular}

SECTION C - Short answer questions of 3 marks each.

Q. no	Expected answer	Marks

26	Finds the prime factorisation of 12^{4} as $\left(2^{8} \times 3^{4}\right)$.	1
Finds the prime factorisation of 6^{4} as $\left(2^{4} \times 3^{4}\right)$ and the prime factorisation of 8^{2} as 2^{6}.	1	
Compares the prime factorisations of $6^{4}, 8^{2}$ and 12^{4} and identifies that 256 or equivalently, 2^{8} is the smallest value of k.	1	
27	(i) Simplifies $\frac{1}{m}+\frac{1}{n}$ as $\frac{(m+n)}{m n}$.	0.5

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Identifies \(m+n=\frac{1}{3}\) and \(m n=\frac{-2}{3}\). \\
Substitutes the values of \((m+n)\) and \((m n)\) and finds:
\[
\frac{1}{m}+\frac{1}{n}=-\frac{1}{2}
\] \\
(ii) Rewrites \(\left(m^{2}+n^{2}\right)\) using the appropriate identity as:
\[
m^{2}+n^{2}=(m+n)^{2}-2 m n
\] \\
Substitutes the values of \((m+n)\) and \((m n)\) in the above expression to get:
\[
m^{2}+n^{2}=\left(\frac{1}{3}\right)^{2}-2\left(\frac{-2}{3}\right)
\] \\
Simplifies the expression and finds:
\[
m^{2}+n^{2}=\frac{13}{9}
\]
\end{tabular} \& 0.5
0.5
0.5

0.5

0.5

\hline 28 \& | i) Substitutes any point on the line from the graph in the equation $a x+y+8=0$ and finds the value of a as (-2). |
| :--- |
| ii) Solves the pair of linear equations either algebraically or graphically and finds the point of intersection of the two lines as $(5,2)$. |
| OR |
| Assumes the prices of one round of shooting and bowling in the combo packs to be x and y respectively. Frames the pair of linear equations as: $\begin{aligned} & 3 x+2 y=285 \\ & 4 x+5 y=485 \end{aligned}$ |
| Solves the above pair of linear equations by an appropriate method to find the value of y as Rs 45 . |
| Writes that the price of one round of bowling in the solo pack is Rs 60 and hence concludes that the price of one round of bowling in the solo pack is $60-45=$ Rs 15 more than that of the combo pack. | \& 1

2
2

1
1
1.5
0.5

\hline 29 \& | Assumes the radius of the circle as $x \mathrm{~cm}$ and since NVUW is a square, $\mathrm{WU}=\mathrm{UV}=x \mathrm{~cm}$. |
| :--- |
| Uses the Pythagoras theorem in Δ SUT and finds the length of ST as $\sqrt{ }(400+100)=10 \sqrt{5} \mathrm{~cm}$. | \& 0.5

0.5
0.5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Finds the length of VT as \((10-x) \mathrm{cm}\) and uses properties of tangents to write \(\mathrm{YT}=\mathrm{VT}\). \\
Uses properties of tangents to equate SY and SW to write the equation as: \(20-x=10 \sqrt{5}-(10-x)\) \\
Solves the above equation for \(x\) to find the radius of the circle as \((15-5 \sqrt{5}) \mathrm{cm}\). \\
OR \\
Joins MP, NQ and uses the perpendicularity of radius to tangents to draw MR parallel line to \(P Q\). The rough figure may look as follows: \\
(Note: The figure is not to scale.) \\
Finds RN as \(16-9=7 \mathrm{~cm}\) and MN as \(9+16=25 \mathrm{~cm}\). \\
Uses the Pythagoras theorem in \(\triangle \mathrm{MRN}\) to find the length of MR as \(\sqrt{ }\left(25^{2}-7^{2}\right)=24 \mathrm{~cm}\). \\
Writes that since \(M R Q P\) is a rectangle, \(P Q=M R=24 \mathrm{~cm}\).
\end{tabular} \& 1
0.5

1.5

0.5
0.5
0.5
0.5

\hline 30 \& | Simplifies LHS of the given equation using $\left(a^{2}-b^{2}\right)$ identity and the trigonometric identity $\sin ^{2} x+\cos ^{2} x=1$ as: $\frac{\left(\cos ^{2} x-\sin ^{2} x\right)}{1-\tan x}$ |
| :--- |
| Simplifies the above expression by rewriting the denominator in terms of sine and cosine ratios as: $\frac{\cos x\left(\cos ^{2} x-\sin ^{2} x\right)}{(\cos x-\sin x)}$ |
| Simplifies the above expression using $\left(a^{2}-b^{2}\right)$ identity as $\cos x(\cos x+\sin x)$. | \& 1

1

0.5
0.5

\hline
\end{tabular}

	Simplifies the above expression by multiplying and dividing with $\sin x$ to $\operatorname{get} \frac{(\cot x+1)}{\sec x \operatorname{cosec} x}$.	Calculates the probability of the dart landing on the smaller sections $(1$ to 8$)$ as $\frac{1}{16}$ and the larger sections $(9$ to 12$)$ as $\frac{1}{8}$.
31	Finds the probability of the dart landing on a composite number as $\frac{9}{16}$. The working may look as follows: $\left(3 \times \frac{1}{16}\right)+\left(3 \times \frac{1}{8}\right)=\frac{9}{16}$	0.5
Finds the probability of the dart landing on an even number as $\frac{1}{2}$. The working may look as follows: $\left(4 \times \frac{1}{16}\right)+\left(2 \times \frac{1}{8}\right)=\frac{1}{2}$	0.5	
Finds the probability of the dart landing on a factor of 12 as $\frac{7}{16}$. The working may look as follows: $\left(5 \times \frac{1}{16}\right)+\left(1 \times \frac{1}{8}\right)=\frac{7}{16}$	0.5	
Compares the above probabilities and concludes that Arya has the highest chances of winning.	0.5	

SECTION D - Long answer questions of 5 marks each.

Q. no	Expected answer	Marks

32	Expresses the number of products sold in the first month (n) in terms of the price in the first month (p) as $n=\frac{12000}{p}$. Frames the following equation based on information given regarding the second month:	0.5
$(p-20)\left(\frac{12000}{p}+40\right)=12000+2000$	1.5	
Simplifies into standard quadratic form as $p^{2}-70 p-6000=0$. Solves the quadratic equation using any suitable method to obtain $p=120$ or $p=-50$. (Neglects $p=-50$ as price cannot be negative.) Finds the price of the product in the second month as $p-20=120-20=$ Rs 100.		

	OR Expresses the area of the tiled portion as $(5-2 x)(4-2 x) \mathrm{m}^{2}$. Expresses the area of the painted portion as $[20-(5-2 x)(4-2 x)] \mathrm{m}^{2}$. Frames a quadratic equation using the information given as follows: $500[(5-2 x)(4-2 x)]+200[20-(5-2 x)(4-2 x)]=5800$ Simplifies into standard quadratic form as $12 x^{2}-54 x+42=0$. Solves the quadratic equation using any suitable method to obtain $x=1$ or $x=3.5$ to conclude that the width of the painted portion would be 1 m . ($x=3.5 \mathrm{~m}$ is not possible because the painted portion would exceed the length and height of the wall.)	1 1 1 1 1 1
33	Uses the formula $l \times b \times h$ to find the volume of the box as 138000 cm^{3}, where $l=30 \mathrm{~cm}, b=40 \mathrm{~cm}$ and $h=115 \mathrm{~cm}$. Uses the formula $\frac{1}{3} \pi r^{2} h$ to find the volume of the ice-cream cone as 154 cm^{3}, where $r=3.5 \mathrm{~cm}$ and $h=12 \mathrm{~cm}$. Uses the formula $\frac{2}{3} \pi r^{3}$ to find the volume of the hemisphere as $89.83 \mathrm{~cm}^{3}$. Finds the volume of 1 serving of dessert as the (volume of cone) + (volume of hemisphere) $=243.83 \mathrm{~cm}^{3}$. Rounds the volume of 1 serving off to $244 \mathrm{~cm}^{3}$. Finds the approximate number of desserts that can be served as 565 , on solving $\frac{138000}{244}=565.57$. OR i) Uses the formula $\pi r^{2} h$ to find the volume of the tanker as $220 \mathrm{~m}^{3}$, where $r=1 \mathrm{~m}$ and $h=70 \mathrm{~m}$. Uses the formula $l b h$ to find the volume of the cuboidal tank as $42 \mathrm{~m}^{3}$, where $l=7 \mathrm{~m}, b=2 \mathrm{~m}$, and $h=3 \mathrm{~m}$. Divides $220 \mathrm{~m}^{3}$ by $42 \mathrm{~m}^{3}$ to get 5.23 . Writes that the tanker can supply water to 5 colonies. (Award full marks if student does not fully divide the numbers, but notices that the quotient is between 5 and 6 , and uses that to conclude that 5 tanks can be completely filled.) ii) Uses formula $\frac{4}{3} \pi r^{3}$ to find the volume of one matka as $38,808 \mathrm{~cm}^{3}$.	1 1.5 1.5 1.5 0.5 0.5 1 1 1 1

SECTION E - Case-based questions of 4 marks each.

Q. no	Expected answer	Marks

36 i)	Finds the common difference between two sets of consecutive terms as: Second term - First term $=30915-27360$ $=3555$	0.5
36 ii)	Third term - Second term $=34470-30915$ $=3555$ Concludes that the common difference is the same and hence the average monthly velocity forms an arithmetic progression. Writes the expression for the sum of average monthly velocities of the first 10 months as $\frac{10}{2}[(2 \times 27360)+(10-1)(3555)]$. 36 iii)	Simplifies the above expression to find p as 433575 km/hour.
Assumes that the spacecraft passed Braille after n months and writes that the expression for the average monthly velocity when it passed Borelly as:	1	

	$\begin{aligned} & 27360+(n+15-1)(3555) \\ & =27360+(n-1)(3555)+(15 \times 3555) \end{aligned}$ (It is given that the velocity when it passed Braille is $27360+(n-1)(3555)=55800 \mathrm{~km} / \mathrm{hr} .)$ Simplifies the above expression to find the average monthly velocity of the spacecraft when it passed Borelly as: $\begin{aligned} & 55800+(15 \times 3555) \\ & =109125 \mathrm{~km} / \text { hour } \end{aligned}$ OR Assumes that the spacecraft passed Braille after n months and finds the nth term of the progression as: $27360+(n-1)(3555)=55800$ Solves the above equation for n as 9 months.	1 1
$37 \mathrm{i})$	Identifies the coordinates of the green ball as $(7,1)$ and the nearest pocket P_{4} as (9, 3). Uses the distance formula to calculate the distance as $\sqrt{ } 8$ or $2 \sqrt{ } 2$ units as follows: $\sqrt{(9-7)^{2}-(3-1)^{2}}=\sqrt{8}=2 \sqrt{2}$ (Award full marks if any other method is used.)	0.5 0.5
$37 \mathrm{ii})$	Finds the coordinates of the yellow ball using the midpoint formula with $\mathrm{W}(-3,-2)$ and $\mathrm{G}(7,1)$ to obtain $\left(2, \frac{-1}{2}\right)$ as follows: $\left(\frac{-3+7}{2}, \frac{-2+1}{2}\right)$	1
37 iii)	Considers the point where the ball struck the rail as $(c, 3)$ and the coordinates of P_{2} (other end point) as (2, -4). Finds c using the section formula as follows: $\begin{aligned} & \left(\frac{2}{7}, 0\right)=\left(\frac{4 \times c+3 \times 2}{4+3}, \frac{4 \times 3+3 \times(-4)}{4+3}\right) \\ & \therefore \frac{4 \times c+3 \times 2}{4+3}=\frac{2}{7} \\ & c=-1 \end{aligned}$ Concludes that the point at which the ball struck the rail is $(-1,3)$.	0.5 1.5

