FINAL NEET(UG)-2019 EXAMINATION

Т

CHEMISTRY

1. Ans.	Under isothermal condition, a gas at 300 K expands from 0.1L to 0.25L against a constant external pressure of 2 bar. The work done by the gas is :- [Given that 1L bar = 100 J] (1) -30 J (2) 5kJ (3) 25 J (4) 30 J (1)	8.	The nu pent-2- (1) 10 α (2) 8 σ (3) 11 α (4) 13 α
2. Ans.	A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is :- (1) C_2A_3 (2) C_3A_2 (3) C_3A_4 (4) C_4A_3 (3)	Ans. 9. Ans.	(1) Which ϕ has only Theory (1) O_2 (3)
3.	pH of a saturated solution of Ca(OH) ₂ is 9. The solubility product (K _{sp}) of Ca(OH) ₂ is :- (1) 0.5×10^{-15} (2) 0.25×10^{-10} (3) 0.125×10^{-15} (4) 0.5×10^{-10}	10.	Which disprop (a) 2C (b) 3Mr
Ans. 4.	(1) The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :- (1) 10 (2) 20 (3) 30 (4) 40		(c) 2KM (d) 2Mr Select t (1) (a)
Ans. 5.	(1) $\Gamma_{0} = (2) 20^{\circ}$ (5) $S_{0} = (4) 40^{\circ}$ (3) For an ideal solution, the correct option is :- (1) $\Delta_{mix} S = 0$ at constant T and P (2) $\Delta_{mix} V \neq 0$ at constant T and P (3) $\Delta_{mix} H = 0$ at constant T and P (4) $\Delta_{mix} G = 0$ at constant T and P	Ans. 11.	Among is :- (1) pen (3) amo
Ans. 6.		Ans. 12.	The co substitu (1) (CH (2) (CH (3) (CH
Ans. 7.	(1) 1.0×10^2 (3) 1.0×10^{10} (2) 1.0×10^5 (4) 1.0×10^{30}	Ans. 13.	Which formatic (1) 50 1 (2) 50 1 (3) 50 1 (4) 50 r
Ans.		Ans.	(1,2)

3.	The number of sigma (σ) and pi (π) bonds in	
	pent-2-en-4-yne is :-	o) p- (0)		
	(1) 10 σ bonds and 3π bonds			
	(2) 8 σ bonds and 5 π bonds			
	(2) 0 0 contrast and 0π contast (3) 11 σ bonds and 2π bonds			
	(4) 13 σ bonds and 2 π bonds (4) 13 σ bonds and no π bond			
Ans.		oona		
).	Which of the following dia	atomic moleci	ilar species	
•	has only π bonds accordi			
	Theory ?			
	•	(3) C ₂	(4) Be ₂	
Ans.	(1) O ₂ (2) N ₂	(0) $0_{\underline{2}}$	(1) 202	
0.	Which of the follo	wing react	ions are	
	disproportionation reaction	-	ions are	
	(a) $2Cu^+ \rightarrow Cu^{2+} + Cu^0$			
	(b) $3MnO_4^{2-} + 4H^+ \rightarrow 2N$		$D_{2} + 2H_{2}O$	
	•	-		
	(c) $2KMnO_4 \xrightarrow{\Delta} K_2Mi$			
	(d) $2MnO_4^- + 3Mn^{2+} + 2$	_	_	
	Select the correct option		-	
	(1) (a) and (b) only			
	(3) (a), (c) and (d)	(4) (a) and (d	l) only	
Ans.	(1)			
1.	Among the following, the n	arrow spectru	m antibiotic	
	is :-	(0)		
	(1) penicillin G	(2) ampicillin		
	(3) amoxycillin	(4) chloramp	nemcoi	
	(1) The connect order of the	ha ai a atu an atl	a of monthead	
2.	The correct order of the	-	-	
	substituted amines in aqu (1) $(CH_3)_2NH > CH_3NH_2$		15 :-	
	(2) $(CH_3)_3N > CH_3NH_2 > (CH_3)_3N > CH_3$			
	$(2) (CH_3)_3 N > (CH_3)_2 N H > C(CH_3)_2 N + C(CH_3)_2 N H > C(CH_3)_2 N + C(CH_3)_2 N $			
	(4) $CH_3NH_2>(CH_3)_2NH>$			
Ans.	(1)	(CI 13/31)		
	Which mixture of the so	lutions will l	and to the	
	formation of negatively cha			
	(1) 50 mL of 1M AgNO $_3$			
	(2) 50 mL of 1M AgNO ₃ (2) 50 mL of 1M AgNO ₃			
	(3) 50 mL of 2 M AgNO			
	(4) 50 mL of 0.1 M AgNO			
Ans.	(1,2)			

- $\mbox{14.} \quad \mbox{Conjugate base for Bronsted acids H_2O and HF are:-} \\ (1) OH^- \mbox{ and H_2F^+ respectively}$
 - (2) H_3O^+ and F^- , respectively
 - (3) OH^- and F^- , respectively
 - (4) H_3O^+ and H_2F^+ , respectively

- 15. Which will make basic buffer ?
 - (1) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M CH₃COOH
 - (2) 100 mL of 0.1 M CH₃COOH + 100 mL of 0.1M NaOH
 - (3) 100 mL of 0.1 M HCl + 200 mL of 0.1 M NH₄OH
 - (4) 100 mL of 0.1 M HCl + 100 mL of 0.1 M NaOH

Ans. (3)

- 16. The compound that is most difficult to protonate is:-
 - (1) $H \sim O H$ (2) $H_3C \sim O H$ (3) $H_3C \sim O CH_3$

(4) Ph

Ans. (4)

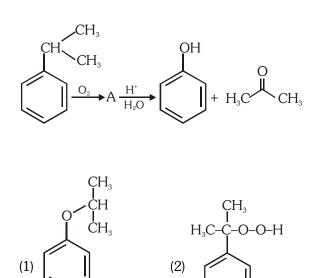
17. The most suitable reagent for the following conversion is :-

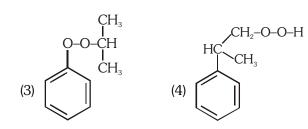
$$H_3C-C=C-CH_3 \longrightarrow H_3C \longrightarrow H$$

cis-2-butene

- (1) Na/liquid NH₃
- (2) H_2 , Pd/C, quinoline (3) Zn/HCl (4) Hg^{2+}/H^+ , H_2O

Ans. (2)


18. Which of the following species is **not** stable ? (1) $[SiF_6]^{2-}$ (2) $[GeCl_6]^{2-}$ (3) $[Sn(OH)_6]^{2-}$ (4) $[SiCl_6]^{2-}$


Ans. (4)

- 19. Which of the following is an amphoteric hydroxide?
 (1) Sr(OH)₂
 (2) Ca(OH)₂
 (3) Mg(OH)₂
 (4) Be(OH)₂
- Ans. (4)

2

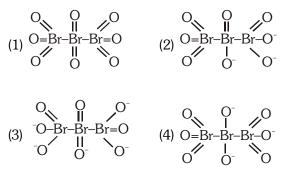
20. The structure of intermediate A in the following reaction is :-

Ans. (2)

- **21.** The manganate and permanganate ions are tetrahedral, due to
 - (1) The π -bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
 - (2) There is no π -bonding
 - (3) The π-bonding involves overlap of p-orbitals of oxygen with p-orbitals of managanese
 - (4) The π-bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese

Ans. (1)

22. For the second period elements the **correct** increasing order of first ionisation enthalpy is :-


(1) Li < Be < B < C < N < O < F < Ne (2) Li < B < Be < C < O < N < F < Ne

(4) Li < Be < B < C < O < N < F < Ne

23.	If t	he rate c	onstant	for a	first order reaction is k,
201					e completion of 99% of
		reaction	-		-
		t = 0.69	-	-	(2) t = $6.909/k$
		t = 4.60			(4) $t = 2.303/k$
Ans.			,		
24.	• •		incorre	e ct sta	atement related to PCl ₅
		m the fol			0
	(1)	Three eq	uatorial	P–Cl	bonds make an angle of
		120° wi	th each o	other	
	(2)	Two axi	al P-Cl b	oonds	; make an angle of 180°
		with eac	h other		
	(3)	Axial P-	-Cl bond	ls are	longer than equatorial
		P–Cl bo	nds		
	(4)	PCl ₅ mo	lecule is	non–	reactive
Ans.	• •				
25.					are arranged in the order
					e correct option is :-
		-	-		(2) $6p > 5f > 5p > 4d$
•			> 4d >	• 5р	(4) $5f > 6p > 4d > 5p$
Ans.	• •			1	
26.		e biodegi		oolym	
		nylon-6 nylon-6	,0		(2) nylon 2–nylon 6 (4) Buna–S
Ans.		-			(4) Dulla=3
27.	• •		enon cor	ກກດເມ	nds in Column–I with its
21.					and assign the correct
	coc			、	
		Colum	n–I		Column-II
	(a)	XeF ₄	(i)		pyramidal
	(b)	XeF ₆	(ii)		square planar
	(c)	XeOF ₄	(iii)		distorted octahedral
	(d)	XeO ₃	(iv)		square pyramidal
	Со	de :			
	<i>(</i> 1)	(a)	(b)	(c)	(d)
	(1)		(ii)	(iii)	(iv)
		(ii)	(iii) (···)	(iv)	(i) (i)
		(ii) (···)	(iii)	(i)	(iv)
Λ		(iii)	(iv)	(i)	(ii)
Ans.	• •		00	+h	aal atability and and an I I F
28.					nal stability order for H_2E
	(上=	(E=O, S, Se, Te and Po) ?			

- (1) $H_2S < H_2O < H_2Se < H_2Te < H_2Po$
- (2) $H_2O < H_2S < H_2Se < H_2Te < H_2Po$
- (3) $H_2Po < H_2Te < H_2Se < H_2S < H_2O$
- (4) $H_2Se < H_2Te < H_2Po < H_2O < H_2S$

29. The correct structure of tribromooctaoxide is :-

Ans. (1)

30. An alkene "A" on reaction with O_3 and $Zn-H_2O$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene "A" gives "B" as the major product. The structure of product "B" is :-

Ans. (3)

- Enzymes that utilize ATP in phosphate transfer 31. require an alkaline earth metal (M) as the cofactor. M is : (1) Be (2) Mg (3) Ca (4) Sr Ans. (2) 32. Which one is malachite from the following?
- (1) $CuFeS_2$ $(2) Cu(OH)_2$ (4) CuCO3.Cu(OH)2 (3) Fe₃O₄ Ans. (4)

33.			ng series of transitions in the	
	•		n atom falls in visible region f	
	(1) Lyman s		(2) Balmer series	
	(3) Paschen	series	(4) Brackett series	
Ans.	. ,	41	1 :1: 4	
34.		e that forms	s maximum boiling azeotrope	2 A
	is : (1) Water +	Nitria aci	:4	3
	(1) Water + (2) Ethanol		IU	
			n disulphide	
	(4) Heptane		-	
Ans.			-	
35.	For the cell	reaction		A
	2Fe ³⁺ (aq)	+ 21-(aq) -	\rightarrow 2Fe ²⁺ (aq) + I ₂ (aq)	4
	_			,
	$E_{cell}^{-} = 0.24$	V al 2901	K. The standard Gibbs energy	/
	$\left(\Delta_{r}^{\circ}G^{\ominus}\right)$ of	the cell re	paction is .	
			onstant F = 96500 C mol ⁻¹]
	(1) – 46.32			
	(2) - 23.16	_		
	(3) 46.32 k	_		
•	(4) 23.16 k	J mol 1		4
Ans.	• •	aa ahamaa	in anticons is a continue ?	'
36.	(1) Evapora	_	e in entropy is negative ?	
	· · · -		as at constant temperature	
	(3) Sublima	-	-	
	(4) 2H(g) →			
	(-) =(3) ,	2(3/		
Ans.	(4)			
		ollowing :		
	(4) Match the f (a) Pure nitr	_	(i) Chlorine	
	Match the f	rogen	(i) Chlorine (ii) Sulphuric acid	
Ans. 37.	Match the f (a) Pure nit	rogen process		
	Match the f (a) Pure nite (b) Haber p	rogen process process	(ii) Sulphuric acid	
Ans. 37.	Match the f (a) Pure nitr (b) Haber p (c) Contact	rogen process process	(ii) Sulphuric acid (iii) Ammonia	
	Match the f (a) Pure nitr (b) Haber p (c) Contact (d) Deacon'	rogen process process s process	(ii) Sulphuric acid (iii) Ammonia (iv) Sodium azide or	
	Match the f (a) Pure nitit (b) Haber p (c) Contact (d) Deacon' Which of th (a) (b)	rogen process s process ne followin (c)	(ii) Sulphuric acid (iii) Ammonia (iv) Sodium azide or Barium azide og is the correct option ? (d)	
	Match the f (a) Pure nitit (b) Haber p (c) Contact (d) Deacon' Which of th (a) (b) (1) (i) (ii)	rogen process s process ne followin (iii)	 (ii) Sulphuric acid (iii) Ammonia (iv) Sodium azide or Barium azide is the correct option ? (d) (iv) 	
	Match the f (a) Pure nitit (b) Haber p (c) Contact (d) Deacon's Which of th (a) (b) (1) (i) (ii) (2) (ii) (iv)	rogen process process s process ne followin (iii) (iii)	(ii) Sulphuric acid (iii) Ammonia (iv) Sodium azide or Barium azide og is the correct option ? (d) (iv) (iii)	
	Match the f (a) Pure nitit (b) Haber p (c) Contact (d) Deacon' (d)	rogen process s process ne followin (iii) (iii)) (i) (ii)	(ii) Sulphuric acid (iii) Ammonia (iv) Sodium azide or Barium azide ig is the correct option ? (d) (iv) (iii) (i)	A
	Match the f (a) Pure nitit (b) Haber p (c) Contact (d) Deacon's Which of th (a) (b) (1) (i) (ii) (2) (ii) (iv)	rogen process s process ne followin (iii) (iii) (i) (ii)	(ii) Sulphuric acid (iii) Ammonia (iv) Sodium azide or Barium azide og is the correct option ? (d) (iv) (iii)	A

- **38.** Which of the following is **incorrect** statement ?
 - (1) PbF_4 is covalent in nature
 - (2) $SiCl_4$ is easily hydrolysed
 - (3) GeX_4 (X = F, Cl, Br, I) is more stable than GeX_2
 - (4) SnF_4 is ionic in nature

Ans. (1)

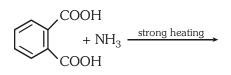
- **39.** The non-essential amino acid among the following is :
 - (1) valine(2) leucine(3) alanine(4) lysine

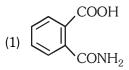
Ans. (3)

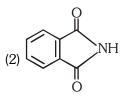
- **40.** A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The **correct** option about the gas and its compressibility factor (Z) is :
 - (1) Z > 1 and attractive forces are dominant
 - (2) Z > 1 and repulsive forces are dominant
 - (3) Z < 1 and attractive forces are dominant
 - (4) Z < 1 and repulsive forces are dominant

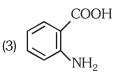
Ans. (3)

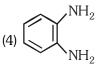
41. Among the following, the reaction that proceeds through an electrophilic substitution is :


(1)
$$N_2Cl \xrightarrow{\oplus} Cu_2Cl_2$$
 $Cl + N_2$


(2)
$$\swarrow$$
 + $Cl_2 \xrightarrow{AlCl_3} \checkmark$ Cl + HCl


(3)
$$(3)$$
 + Cl₂ (1) + Cl


(4)
$$\bigcirc$$
 -CH₂OH + HCl $\xrightarrow{\text{heat}}$ \bigcirc -CH₂Cl + H₂O


42. The major product of the following reaction is :

43. For the chemical reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ the **correct** option is :

$$(1) -\frac{1}{3} \frac{d[H_2]}{dt} = -\frac{1}{2} \frac{d[NH_3]}{dt}$$
$$(2) -\frac{d[N_2]}{dt} = 2 \frac{d[NH_3]}{dt}$$
$$(3) -\frac{d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$$
$$(4) 3 \frac{d[H_2]}{dt} = 2 \frac{d[NH_3]}{dt}$$

Ans. (3)

44. What is the **correct** electronic configuration of the central atom in $K_4[Fe(CN)_6]$ based on crystal field theory ?

(1)	$t_{2g}^4 e_g^2$	(2)	$t_{2g}^{6}e_{g}^{0}$

(3)
$$e^{3}t_{2}^{3}$$
 (4) $e^{4}t_{2}^{2}$

Ans. (2)

- **45.** The method used to remove temporary hardness of water is :
 - (1) Calgon's method
 - (2) Clark's method
 - (3) Ion-exchange method
 - (4) Synthetic resins method

	PHYS			TEST PAPER WIT
46. Ans.	absorbed nor released (1) isothermal (3) isobaric (2)	(2) adiabatic (4) isochoric	51.	Body A of mass 4m mov with another body B of collision is head on and e collision the fraction of en body A is :
47.	 (1) increase in its mass (2) increase in its kineti (3) decrease in its press (4) decrease in intermo 	sure	Ans. 52.	(1) $\frac{1}{9}$ (2) $\frac{8}{9}$ (2) The speed of a swimmer The speed of river water
Ans. 48.	The total energy of an orbit is -3.4 eV. Its kine are, respectively : (1) -3.4 eV, -3.4 eV (3) 3.4 eV, -6.8 eV	electron in an atom in an etic and potential energies (2) –3.4 eV, –6.8 eV (4) 3.4 eV, 3.4 eV		due east. If he is standing wishes to cross the river al angle at which he should m is given by : (1) 30° west (3) 60° west
Ans. 49.	A 1	• +6V	Ans. 53. Ans.	A mass m is attached to a a vertical circle. The wir when : (1) the mass is at the hig (2) the wire is horizontal (3) the mass is at the low (4) inclined at an angle of
Ans.	B 1 The correct Boolean op circuit diagram drawn i (1) AND (3) NAND (3)	eration represented by the s : (2) OR (4) NOR	54.	The displacement of a p harmonic motion is given $y = A_0 + A\sin\omega t + B\cos\omega$ Then the amplitude of it (1) $A_0 + \sqrt{A^2 + B^2}$

- A block of mass 10 kg is in contact against the inner **50**. wall of a hollow cylindrical drum of radius 1 m. The coefficient of friction between the block and the inner wall of the cylinder is 0.1. The minimum angular velocity needed for the cylinder to keep the block stationary when the cylinder is vertical and rotating about its axis, will be : $(g = 10 \text{ m/s}^2)$
 - (2) $\frac{10}{2\pi}$ rad/s (1) $\sqrt{10}$ rad/s (3) 10 rad/s (4) $10\pi \text{ rad/s}$

Ans. (3)

TH ANSWER

oving with speed u collides of mass 2m, at rest. The elastic in nature. After the energy lost by the colliding

(1)
$$\frac{1}{9}$$
 (2) $\frac{8}{9}$ (3) $\frac{4}{9}$ (4) $\frac{5}{9}$

er in still water is 20 m/s. er is 10 m/s and is flowing ng on the south bank and along the shortest path, the make his strokes w.r.t. north

(1)
$$30^{\circ}$$
 west (2) 0°
(3) 60° west (4) 45° west

- a thin wire and whirled in ire is most likely to break
 - ghest point
 - 1
 - west point
 - of 60° from vertical
- particle executing simple en by

sωt.

its oscillation is given by :

(1)
$$A_0 + \sqrt{A^2 + B^2}$$
 (2) $\sqrt{A^2 + B^2}$

(3)
$$\sqrt{A_0^2 + (A + B)^2}$$
 (4) A + B

Ans. (2)

A 800 turn coil of effective area 0.05 m^2 is kept 55. perpendicular to a magnetic field 5×10^{-5} T. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the emf induced in the coil will be :

(1) 2 V	(2) 0.2 V
(3) 2×10^{-3} V	(4) 0.02 V

Ans. (4)

56. Average velocity of a particle executing SHM in one complete vibration is :

(1)
$$\frac{A\omega}{2}$$
 (2) $A\omega$ (3) $\frac{A\omega^2}{2}$ (4) Zero

Ans. (4)

- **57.** A soap bubble, having radius of 1 mm, is blown from a detergent solution having a surface tension of 2.5×10^{-2} N/m. The pressure inside the bubble equals at a point Z₀ below the free surface of water in a container. Taking g = 10 m/s² density of water = 10^3 kg/m³, the value of Z₀ is :- (1) 100 cm (2) 10 cm
 - (3) 1 cm (4) 0.5 cm

Ans. (3)

58. A copper rod of 88 cm and an aluminum rod of unknown length have their increase in length independent of increase in temperature. The length of aluminum rod is : ($\alpha_{Cu} = 1.7 \times 10^{-5} \text{ K}^{-1}$ and $\alpha_{Al} = 2.2 \times 10^{-5} \text{ K}^{-1}$)

Ans. (4)

59. The unit of thermal conductivity is : (1) J m K⁻¹ (2) J m⁻¹ K⁻¹

(3) W m K^{-1} (4) W m⁻¹ K^{-1}

Ans. (4)

60. When a block of mass M is suspended by a long wire of length L, the length of the wire become (L+*l*). The elastic potential energy stored in the extended wire is :-

(2) MgL

(4) $\frac{1}{2}$ MgL

(1) Mg*l*

(3) $\frac{1}{2}$ Mgl

- Ans. (3)
- 61. A disc of radius 2m and mass 100 kg rolls on a horizontal floor. Its centre of mass has speed of 20 cm/s. How much work is needed to stop it ? (1) 3J (2) 30 kJ (3) 2 J (4) 1 J

Ans. (1)

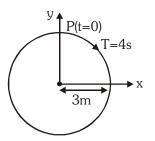
62. In an experiment, the percentage of error occurred in the measurment of physical quantities A, B, C and D are 1%, 2%, 3% and 4% respectively. Then the maximum percentage of error in the

measurement X, where
$$X = \frac{A^2 B^{1/2}}{C^{1/3} D^3}$$
, will be :
(1) $\left(\frac{3}{13}\right)\%$ (2) 16%
(3) -10% (4) 10%
(2)

63. A body weighs 200 N on the surface of the earth. How much will it weigh half way down to the centre of the earth ?

(1) 150 N	(2) 200 N
(3) 250 N	(4) 100 N

Ans. (4)


- 64. Which colour of the light has the longest wavelength ?(1) red(2) blue
 - (3) green (4) violet

Ans. (1)

65. A solid cylinder of mass 2 kg and radius 4 cm is rotating about its axis at the rate of 3 rpm. The torque required to stop after 2π revolutions is : (1) 2×10^{-6} N m (2) 2×10^{-3} N m (3) 12×10^{-4} N m (4) 2×10^{6} N m

Ans. (1)

66. The radius of circle the period of revolution initial position and sense of revolution are indicated in the fig.

y-projection of the radius vector of rotating particle \boldsymbol{P} is :

(1) $y(t) = -3\cos 2\pi t$, where y in m

(2)
$$y(t) = 4\sin\left(\frac{\pi t}{2}\right)$$
, where y in m

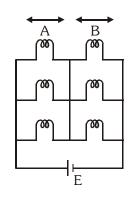
(3)
$$y(t) = 3\cos\left(\frac{3\pi t}{2}\right)$$
, where y in m

(4)
$$y(t) = 3\cos\left(\frac{\pi t}{2}\right)$$
, where y in m

Ans. (4)

- **67.** A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the centre :
 - (1) increases as r increases for r < R and for r > R
 - (2) zero as r increases for r < R, decreases as r increases for r > R
 - (3) zero as r increases for r < R, increases as r increases for r > R $\,$

(4) decreases as r increases for r < R and for r > RAns. (2)


68. In which of the following devices, the eddy current effect is not used ?(1) induction furnace

- (2) magnetic braking in train
- (3) electromagnet
- (4) electric heater

Ans. (4)

69. Six similar bulbs are connected as shown in the figure with a DC source of emf E, and zero internal resistance.

The ratio of power consumption by the bulbs when (i) all are glowing and (ii) in the situation when two from section A and one from section B are glowing, will be :

1)
$$4:9$$
 (2) $9:4$

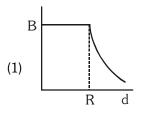
 3) $1:2$
 (4) $2:1$

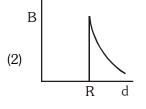
Ans. (2)

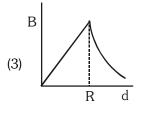
(

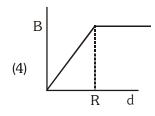
- **70.** At a point A on the earth's surface the angle of dip, $\delta = +25^\circ$. At a point B on the earth's surface the angle of dip, $\delta = -25^\circ$. We can interpret that :
 - (1) A and B are both located in the northern hemisphere.
 - (2) A is located in the southern hemisphere and B is located in the northern hemisphere.
 - (3) A is located in the northern hemisphere and B is located in the southern hemisphere.
 - (4) A and B are both located in the southern hemisphere

Ans. (3)


- **71.** A force F = 20 + 10y acts on a particle in y-direction where F is in newton and y in meter. Work done by this force to move the particle from y = 0 to y = 1 m is : (1) 30 J (2) 5 J
 - (3) 25 J (4) 20 J




- **72.** Pick the **wrong** answer in the context with rainbow.
 - When the light rays undergo two internal reflections in a water drop, a secondary rainbow is formed.
 - (2) The order of colours is reversed in the secondary rainbow.
 - (3) An observer can see a rainbow when his front is towards the sun.
 - (4) Rainbow is a combined effect of dispersion refraction and reflection sunlight.


Ans. (3)

73. A cylindrical conductor of radius R is carrying a constant current. The plot of the magnitude of the magnetic field, B with the distance d, from the centre of the conductor, is **correctly** represented by the figure :

Ans. (3)

74. Two particles A and B are moving in uniform circular motion in concentric circles of radius r_A and r_B with speed v_A and v_B respectively. The time period of rotation is the same. The ratio of angular speed of A to that of B will be :

(1)
$$r_A : r_B$$
 (2) $v_A : v_B$

(3) $r_B : r_A$ (4) 1 : 1

Ans. (4)

75. Two similar thin equi-convex lenses, of focal length f each, are kept coaxially in contact with each other such that the focal length of the combination is F_1 . When the space between the two lenses is filled with glycerin (which has the same refractive index ($\mu = 1.5$) as that of glass) then the equivalent focal length is F_2 . The ratio $F_1 : F_2$ will be :

Ans. (2)

- 76. In total internal reflection when the angle of incidence is equal to the critical angle for the pair of media in contact, what will be angle of refraction? (1) 180°
 - (2) 0°
 - (3) equal to angle of incidence
 - (4) 90°

Ans. (4)

77. Two parallel infinite line charges with linear charge densities $+\lambda$ C/m and $-\lambda$ C/m are placed at a distance of 2R in free space. What is the electric field mid-way between the two line charges?

(1) zero

(2)
$$\frac{2\lambda}{\pi \in_0 R}$$
 N/C

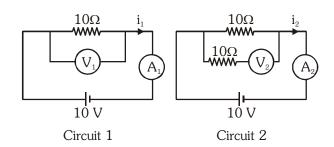
(3)
$$\frac{\lambda}{\pi \in_0 R} N/C$$
 (4) $\frac{\lambda}{2\pi \in_0 R} N/C$

Ans. (3)

- **78.** For a p-type semiconductor which of the following statements is **true** ?
 - (1) Electrons are the majority carriers and trivalent atoms are the dopants.
 - (2) Holes are the majority carriers and trivalent atoms are the dopants.
 - (3) Holes are the majority carriers and pentavalent atoms are the dopants.
 - (4) Electrons are the majority carriers and pentavalent atoms are the dopants.

Ans. (2)

- **79.** Which of the following acts as a circuit protection device?
 - (1) conductor(2) inductor(3) switch(4) fuse


Ans. (4)

80. A parallel plate capacitor of capacitance 20μF is being charged by a voltage source whose potential is changing at the rate of 3 V/s. The conduction current through the connecting wires, and the displacement current through the plates of the capacitor, would be, respectively :

(1) zero, 60 μA
(2) 60 μA, 60 μA
(3) 60 μA, zero
(4) zero, zero

Ans. (2)

81. In the circuits shown below, the readings of the voltmeters and the ammeters will be :

- (1) $V_2 > V_1$ and $i_1 = i_2$ (2) $V_1 = V_2$ and $i_1 > i_2$
- (3) $V_1 = V_2$ and $i_1 = i_2$
- (4) $V_2 > V_1$ and $i_1 > i_2$

Ans. (3)

- **82.** α -particle consists of :
 - (1) 2 protons and 2 neutrons only
 - (2) 2 electrons, 2 protons and 2 neutrons
 - (3) 2 electrons and 4 protons only
 - (4) 2 protons only

Ans. (1)

83. An electron is accelerated through a potential difference of 10,000 V. Its de Broglie wavelength is, (nearly) : ($m_e = 9 \times 10^{-31}$ kg)

- (1) 12.2×10^{-13} m
- (2) 12.2×10^{-12} m
- (3) 12.2×10^{-14} m
- (4) 12.2 nm

- 84. When an object is shot from the bottom of a long smooth inclined plane kept at an angle 60° with horizontal, it can travel a distance x_1 along the plane. But when the inclination is decreased to 30° and the same object the shot with the same velocity, it can travel x_2 distance. Then $x_1 : x_2$ will be
 - (1) $1:\sqrt{2}$ (2) $\sqrt{2}:1$
 - (3) $1:\sqrt{3}$ (4) $1:2\sqrt{3}$

- **85.** A small hole of area of cross-section 2 mm² is present near the bottom of a fully filled open tank of height 2 m. Taking $g = 10 \text{ m/s}^2$, the rate of flow of water through the open hole would be nearly : (1) $12.6 \times 10^{-6} \text{ m}^3/\text{s}$
 - (2) 8.9 $\times 10^{-6}$ m³/s
 - (3) 2.23 $\times 10^{-6}$ m³/s

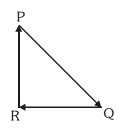
(4)
$$6.4 \times 10^{-6} \text{ m}^3/\text{s}$$

Ans. (1)

86. Two point charges A and B, having charges +Q and -Q respectively, are placed at certain distance apart and force acting between them is F. If 25% charge of A is transferred to B, then force between the charges becomes :

(1) F (2)
$$\frac{9F}{16}$$

(3) $\frac{16F}{2}$	(4) 4F
(3) - 9	(4) $\frac{1}{3}$


Ans. (2)

87. Ionized hydrogen atoms and α -particles with same momenta enters perpendicular to a constant magnetic field B. The ratio of their radii of their paths $r_H : r_{\alpha}$ will be

(1) 2 :1	(2) 1 : 2
(3) 4 : 1	(4) 1 : 4

Ans. (1)

88. A particle moving with velocity \overrightarrow{V} is acted by three forces shown by the vector triangle PQR. The velocity of the particle will :

(1) increase

- (2) decrease
- (3) remain constant
- (4) change according to the smallest force \overrightarrow{QR}

Ans. (3)

- **89.** The work done to raise a mass m from the surface of the earth to a height h, which is equal to the radius of the earth, is :
 - (1) mgR (2) 2 mgR

(3)
$$\frac{1}{2}$$
 mgR (4) $\frac{3}{2}$ mgR

Ans. (3)

90. In a double slit experiment, when light of wavelength 400 nm was used, the angular width of the first minima formed on a screen placed 1m away, was found to be 0.2°. What will be the angular width of the first minima, if the entire experimental apparatus is immersed in water ($\mu_{water} = 4/3$) (1) 0.266° (2) 0.15°

	(3) 0.05°	(4) 0.1°
Ans.	(2)	

	BIOLOGY		T
91.	Which of the following statements is incorrect ?	97.	Whi
	(1) Viroids lack a protein coat		cons
	(2) Viruses are obligate parasites		(1)
	(3) Infective constituent in viruses is the protein		(2) V
	coat		(3)
	(4) Prions consist of abnormally folded proteins		(4) 5
Ans.	(3)	Ans.	(3)
92.	Purines found both in DNA and RNA are :-	98 .	Und
	(1) Adenine and thymine		be r
	(2) Adenine and guanine		mRl
	(3) Guanine and cytosine		
	(4) Cytosine and thymine		(1)
Ans.	(2)		(2) I
93 .	Which of the following glucose transporters is insulin-		(3)
	dependent ?		
	(1) GLUT I (2) GLUT II		(4) E
	(3) GLUT III (4) GLUT IV	Ans.	(4)
Ans.	(4)	99.	Whi
94.	Identify the cells whose secretion protects the lining		for o
	of gastro-intestinal tract from various enzymes :-		(1)
	(1) Chief Cells		(2) E
	(2) Goblet Cells		(3)
	(3) Oxyntic Cells		(4) E
	(4) Duodenal Cells		
Ans.	(2)	Ans.	(4)
95.	Which one of the following equipments is essentially	100.	Mat
	required for growing microbes on a large scale, for		they
	industrial production of enzymes?		(a) <i>L</i>
	(1) BOD incubator (2) Sludge digester		(b) S
A ma	(3) Industrial oven (4) Bioreactor		
Ans. 96.	(4) Which of the following in true for Golden rice ?		(c) A
<i>J</i> 0.	(1) It is Vitamin A enriched, with a gene from		(d) A
	daffodil		
	(2) It is pest resistant, with a gene from <i>Bacillus</i>		Sele
	thuringiensis		
	(3) It is drought tolerant, developed using		(1)
	Agrobacterium vector		(2) ii
	(4) It has yellow grains, because of a gene introduced		(3)
	from a primitive variety of rice		(4) ii
Ans.	(1)	Ans.	(2)

TEST PAPER WITH ANSWER

- Thich one of the following is **not** a method of *in situ* onservation of biodiversity?
 -) Biosphere Reserve
 - ?) Wildlife Sanctuary
 - B) Botanical Garden
 -) Sacred Grove
- Inder which of the following conditions will there e no change in the reading frame of following RNA?

5'AACAGCGGUGCUAUU3'

-) Insertion of G at 5th position
- 2) Deletion of G from 5th position
- 3) Insertion of A at G at 4^{th} and 5^{th} positions respectively
- A) Deletion of GGU from 7th, 8th and 9th positions

I)

99.	W	hich of	f thes	e fol	llowing	g metho	ods is	the mo	st suitał	ole
	~			~			0			

- or disposal of nuclear waste ?
- .) Shoot the waste into space
- 2) Bury the waste under Antarctic ice-cover
- b) Dump the waste within rocks under deep ocean
- Burry the waste within rocks deep below the Earth's surface

I)

latch the following organisms with the products ey produce :-

(a) (b)	(c)	6
Select the correct opti	on.	
	(v) Acetic	Acid
(d) Acetobacter aceti	(iv) Bread	ł
(c) Aspergillus niger	(iii) Citric	Acid
cerevisiae		
(b) Saccharomyces	(ii) Curd	
(a) <i>Lactobacillus</i>	(i) Chees	e
	(1) (1)	

	(a)	(b)	(c)	(d)
	(1) ii	iv	v	iii
	(2) ii	iv	iii	v
	(3) iii	iv	v	i
	(4) ii	i	iii	v
Ans.	(2)			

- **101.** What map unit (Centimorgan) is adopted in the construction of genetic maps ?
 - (1) A unit of distance between two expressed genes, representing 10% cross over
 - $(2) A \text{ unit of distance between two expressed genes}, \\ representing 100\% \ cross \ over$
 - (3) A unit of distance between genes on chromosomes, representing 1% cross over
 - (4) A unit of distance between genes on chromosomes, representing 50% cross over

- **102.** Select the hormone-releasing Intra-Uterine Devices? (1) Vaults, LNG-20
 - (2) Multiload 375, Progestasert
 - (3) Progestasert, LNG-20
 - (4) Lippes Loop, Multiload 375

Ans. (3)

- **103.** Which of the following can be used as a biocontrol agent in the treatment of plant disease ?
 - (1) Trichoderma
 - (2) Chlorella
 - (3) Anabaena
 - (4) Lactobacillus

Ans. (1)

- 104. Expressed Sequence Tages (ESTs) refers to :-
 - (1) Genes expressed as RNA
 - (2) Polypeptide expression
 - (3) DNA polymorphism
 - (4) Novel DNA sequences

Ans. (1)

- **105.** Colostrum, the yellowish fluid, secreted by mother during the initial days of lactation is very essential to impart immunity to the newborn infants because it contains :-
 - (1) Natural killer cells
 - (2) Monocytes
 - (3) Macrophages
 - (4) Immunoglobulin A

Ans. (4)

- 106. Select the incorrect statement :-
 - (1) Inbreeding increases homozygosity
 - (2) Inbreeding is essential to evolve purelines in any animal
 - (3) Inbreeding selects harmful recessive genes that reduce fertility and productivity
 - (4) Inbreeding helps in accumulation of superior genes elimination of undesirable genes

Ans. (3) 2

- **107.** Select the **correct** sequence of transport of sperm cells in male reproductive system :-
 - Testis → Epididymis → Vasa efferentia → Rete testis → Inguinal canal → Urethra
 - (2) Seminiferous tubules → Rete testis → Vasa efferentia → Epididymis → Vas deferens → Ejaculatory duct → Urethra → Urethral meatus
 - (3) Seminiferous tubules → Vasa efferentia → Epididymis → Inguinal canal → Urethra
 - (4) Testis → Epididymis → Vasa efferentia → Vas
 deferens → Ejaculatory duct → Inguinal canal
 → Urethra → Urethral meatus

Ans. (2)

108. A gene locus has two alleles A, a. If the frequency of dominant allele A is 0.4 then what will be the frequency of homozygous dominant, heterozygous and homozygous recessive individuals in the population ?

(1) 0.36 (AA); 0.48(Aa); 0.16 (aa)

- (2) 0.16 (AA); 0.24 (Aa); 0.36 (aa)
- (3) 0.16 (AA); 0.48 (Aa); 0.36 (aa)
- (4) 0.16 (AA); 0.36 (Aa); 0.48 (aa)

Ans. (3)

109. Match the following organisms with their respective characteristics :-

(a) <i>Pila</i>		(i) Flame	(i) Flame cells		
(b) <i>Bomby</i>	X	(ii) Com	o plates		
(c) <i>Pleurol</i>	brachia	(iii) Radu	(iii) Radula		
(d) <i>Taenia</i>		(iv) Malp	(iv) Malpighian tubules		
Select the	correct o	ption from th	e following		
(a)	(b)	(c)	(d)		
(1) (iii)	(ii)	(i)	(iv)		
(2) (iii)	(iv)	(ii)	(i)		

(iii)

(iv)

(i)

(i)

(4) (iiii) Ans. (2)

(3) (ii)

- **110.** The shorter and longer arms of a submetacentric chromosome are referred to as :-
 - (1) s-arm and l-arm respectively

(iv)

(ii)

- (2) p-arm and q-arm respectively
- (3) q-arm and p-arm respectively
- (4) m-arm and n-arm respectively

Ans. (2)

- **111.** What is the site of perception of photoperiod necessary for induction of flowering in plants :-
 - (1) Lateral buds (2) Pulvinus
 - (3) Shoot apex (4) Leaves

Ans. (4)

112.	Which part of the br	ain is responsible for	119.
	thermoregulation ?		
	(1) Cerebrum	(2) Hypothalamus	
	(3) Corpus callosum	(4) Medulla oblongata	
Ans.	(2)		
113.	Which of the following p	air of organelles does not	
	contain DNA :-		Ans.
	(1) Mitochondria and Lys	sosomes	120
	(2) Chloroplast and Vacu	ioles	
	(3) Lysosomes and Vacu	oles	
	(4) Nuclear envelope and	l Mitochondria	
Ans.	(3)		
114.	What is the genetic disor	der in which an individual	
	has an overall mas	culine development,	Ans.
	gynaecomastia, and is st	erile ?	121.
	(1) Turner's syndrome		
	(2) Klinefelter's syndrome	2	
	(3) Edward syndrome		
	(4) Down's syndrome		
Ans.	(2)		
115.	Xylem translocates :-		
	(1) Water only		
	(2) Water and mineral sa	alts only	Ans.
	(3) Water, mineral salts a	nd some organic nitrogen	122.
	only		
	(4) Water, mineral salts, so	ome organic nitrogen and	
	hormones		
Ans.	(4)		
116.	Which of the following	pairs of gases is mainly	
	responsible for green ho		
	(1) Ozone and Ammonia		Ans.
	(2) Oxygen and Nitroger		123.
	(3) Nitrogen and Sulphu		
	(4) Carbon dioxide and M	Methane	
	(4)		
117.	Which of the following pro	-	
		bons into the atmosphere?	
	(1) Montreal protocol		
	(2) Kyoto protocol		Ans.
	(3) Gothenburg Protocol		124.
	(4) Geneva Protocol		
Ans.	. ,		
118.	Is some plants, the fema	-	
		ion. This phenomenon is	
	known as :		
	(1) Autogamy	(2) Parthenocarpy	Ans.

- (1) Autogamy (3) Syngamy
 - (4) Parthenogenesis
- Ans. (4)

- Which of the following sexually transmitted diseases is not completely curable ?
 - (1) Gonorrhoea
 - (2) Genital warts
 - (3) Genital herpes
 - (4) Chlamydiasis

(3)

- . Which of the following immune responses is responsible for rejection of kidney graft?
 - (1) Auto- immune respones
 - (2) Humoral immune response
 - (3) Inflammatory immune response
 - (4) Cell-mediated immune response

(4)

- . Which of the following factors is responsible for the formation of concentrated urine?
 - (1) Low levels of antidiuretic hormone.
 - (2) Maintaining hyperosmolarity towards inner medullary interstitium in the kidneys.
 - (3) Secretion of erythropoietin by juxtaglomerular complex.
 - (4) Hydrostatic pressure during glomerular filtration.

(2)

- . Which of the following features of genetic code does allow bacteria to produce human insulin by recombinant DNA technology?
 - (1) Genetic code is not ambiguous
 - (2) Genetic code is redundant
 - (3) Genetic code is nearly universal
 - (4) Genetic code is specific

(3)

- . Which of the following statements is **not** correct?
 - (1) Lysosomes have numerous hydrolytic enzymes.
 - (2) The hydrolytic enzymes of lysosomes are active under acidic pH.
 - (3) Lysosomes are membrane bound structures.
 - (4) Lysosomes are formed by the process of packaging in the endoplasmic reticulum.

(4)

- The concept of " Omnis cellula-e cellula" regarding cell division was first proposed by:
 - (1) Rudolf Virchow
 - (2) Theodore Schwann
 - (3) Schleiden
 - (4) Aristotle
- Ans. (1)

125.	Use of an artificial kidney during hemodialysis may	130.
	result in :	
	(a) Nitrogenous waste build-up in the body	
	(b) Non-elimination of excess potassium ions	
	(c) Reduced absorption of calcium ions from gastro-	
	intestinal tract	
	(d) Reduced RBC production	
	Which of the following options is the most	
	appropiate?	
	(1) (a) and (b) are correct	
	(2) (b) and (c) are correct	
	(3) (c) and (d) are correct	A
	(4) (a) and (d) are correct	Ans.
Ans.	(3)	131.
126.	What is the direction of movement of sugars in	
	phloem?	
	(1) Non-multidirectional	
	(2) Upward	
	(3) Downward	
	(4) Bi-directional	
Ans.	(4)	Ans.
127.	Which of the following muscular disorders is	132.
	inherited ?	
	(1) Tetany	
	(2) Muscular dystrophy	
	(3) Myasthenia gravis	
	(4) Botulism	
Ans.	(2)	•
128.	Consider following features:	Ans.
	(a) Organ system level of organisation	133.
	(b) Bilateral symmetry	
	(c) True coelomates with segmentation of body	
	Select the correct option of animal groups which	
	possess all the above characteristics.	
	(1) Annelida, Arthropoda and Chordata	
	(2) Annelida, Arthropoda and Mollusca	Ans.
	(3) Arthropoda , Mollusca and Chordata	134.
	(4) Annelida, Mollusca and Chordata	
Ans.	(1)	
129.	The frequency of recombination between gene pairs	
	on the same chromosome as a measure of the	
	distance between genes was explained by :	
	(1) T.H. Morgan	Ans.
	(2) Gregor J. Mendel	
	(3) Alfred Sturtevant	135.
	(4) Sutton Boveri	
Ans.		

- **130.** Following statements describe the characteristics of the enzyme Restriction endonuclease. Identify the incorrect statement.
 - (1) The enzyme cuts DNA molecule at identified position within the DNA
 - (2) The enzyme binds DNA at specific sites and cuts only one of the two strands.
 - (3) The enzyme cuts the sugar-phosphate backbone at specific sites on each strand.
 - (4) The enzyme recognizes a specific palindromic nucleotide sequence in the DNA

. (2)

- . Which of the following statements is **incorrect**?
 - (1) Morels and truffles are edible delicacies.
 - (2) Claviceps is a source of many alkaloids and LSD.
 - (3) Conidia are produced exogenously and ascospores endogenously.
 - (4) Yeasts have filamentous bodies with long threadlike hyphae.

. (4)

- Placentation, in which ovules develop on the inner wall of the ovary or in peripheral part, is :
 - (1) Basal
 - (2) Axile
 - (3) Parietal
 - (4) Free central

. (3)

- Which of the following is the most important causes for animals and plants being driven to extinction?
 - (1) Habitat loss and fragmentation
 - (2) Drought and floods
 - (3) Economic exploitation
 - (4) Alien species invasion

. (1)

- Variations caused by mutation, as proposed by Hugo de Vries, are
 - (1) random and directional
 - (2) random and directionless
 - (3) small and directional
 - (4) small and directionless

. (2)

. Respiratiory Quotient (RQ) value of tripalmitin is :

- (1) 0.9(2) 0.7(3) 0.07(4) 0.09
- . (2)

- **136.** In Antirrhinum (Snapdragon), a red flower was crossed with a white flower and in F_1 generation, pink flowers were obtained. When pink flowers were selfed, the F_2 generation showed white, red and pink flowers. Choose the incorrect statement from the following :
 - (1) This experiment does not follow the Principle of Dominance
 - (2) Pink colour in F_1 is due to incomplete dominance.

(3) Ratio of F₂ is
$$\frac{1}{4}$$
 (Red) : $\frac{2}{4}$ (Pink): $\frac{1}{4}$ (White)

(4) Law of Segregation does not apply in this experiment.

Ans. (4)

- 137. Select the incorrect statement.
 - (1) Male fruit fly is heterogametic.
 - (2) In male grasshoppers, 50% of sperms have no sex-chromosome.
 - (3) In domesticated fowls sex of progeny depends on the type of sperm rather than egg.
 - (4) Human males have one of their sex-chromosome much shorter than the other.

Ans. (3)

- **138.** The **correct** sequence of phases of cell cycle is : (1) $M \rightarrow G_1 \rightarrow G_2 \rightarrow S$
 - $(2) G_1 \rightarrow G_2 \rightarrow S \rightarrow M$
 - $(3) \ S \rightarrow G_1 \rightarrow G_2 \rightarrow M$
 - $(4) G_1 \rightarrow S \rightarrow G_2 \rightarrow M$

Ans. (4)

139. *Thiobacillus* is a group of bacteria helpful in carrying out :

- (1) Nitrogen fixation
- (2) Chemoautotrophic fixation
- (3) Nitrification
- (4) Denitrification

Ans. (4)

- **140.** Polyblend, a fine powder of recycled modified plastic, has proved to be a good material for:
 - (1) making plastic sacks
 - (2) use as a fertilizer
 - (3) construction of roads
 - (4) making tubes and pipes

Ans. (3)

- **141.** From evolutionary point of view, retention of the female gametophyte with developing young embryo on the parent sporophyte for some time, is first observed in :
 - (1) Liverworts (2) Mosses
 - (3) Pteridophytes (4) Gymnosperms
- Ans. (3)
- **142.** Select the **correct** option .
 - (1) 8th, 9th and 10th pairs of ribs articulate directly with the sternum.
 - (2) 11th and 12th pairs of ribs are connected to the sternum with the help of hyaline cartilage.
 - (3) Each rib is a flat thin bone and all the ribs are connected dorsally to the thoracic vertebrae and ventrally to the sternum.
 - (4) There are seven pairs of vertebrosternal, three pairs of vertebrochondral and two pairs of vertebral ribs.

Ans. (4)

- **143.** Concanavalin A is : (1) an alkaloid
 - (2) an essential oil
 - (3) a lectin (4) a pigment

Ans. (3)

- **144.** Extrusion of second polar body from egg nucleus occurs :
 - (1) after entry of sperm but before fertilization
 - (2) after fertilization
 - (3) before entry of sperm into ovum
 - (4) simultaneously with first cleavage

Ans. (1)

- **145.** Pinus seed **cannot** germinate and establish without fungal association. This is because :
 - (1) its embryo is immature
 - (2) it has obligate association with mycorrhizae.
 - (3) it has very hard seed coat.
 - (4) its seeds contain inhibitors that prevent germination .

- **146.** The Earth Summit held in Rio de Janeiro in 1992 was called :
 - (1) to reduce CO_2 emissions and global warming.
 - (2) for conservation of biodiversity and sustainable utilization of its benefits.
 - (3) to assess threat posed to native species by invasive weed species.
 - (4) for immediate steps to discontinue use of CFCs that were damaging the ozone layer.
- Ans. (2)

147.					a mixture of biomolecules	151.	Which of the following co involve a role of hormon	-	
				by treat	ment with :		(1) Lactational amenorrhea, Pills, Emergenc		
		soprop					contraceptives	filled, This, Emergency	
	(2) Chilled ethanol						(2) Barrier method, Lacta	ational amenorrhea Pille	
	(3) Methanol at room temperature				emperature		(3) CuT, Pills, Emergency		
	(4) C	Chilled o	chlorof	orm			(4) Pills, Emergency contra		
Ans.	(2)					Ans.		1	
148.	Gras	s leave	s curl i	nwards	during very dry weather.	152.	Drug called 'Heroin' is sy	nthesized by :	
			most	appro	priate reason from the		(1) methylation of morph	ine	
	follo	wing :					(2) acetylation of morphi	ne	
	(1) (Closure	of stor	nata			(3) glycosylation of morph	hine	
	(2) F	laccidi	ty of bi	ulliform	cells		(4) nitration of morphine		
	(3) S	hrinka	ge of a	ir spac	es in spongy mesophyll	Ans.	• •		
	(4) T	`yloses	in vess	els		153.	In a species, the weight o	-	
Ans.	(2)						to 5 kg. 97% of the newbo		
149.	Mate	ch the f	ollowin	ng struc	tures with their respective		between 3 to 3.3kg surv		
	loca	tion in	organs	:			infants born with weights		
	(a) C	Crypts o	of Liebe	erkuhn	(i) Pancreas		to 5 kg die. Which type of place ?	selection process is taking	
	(b) G	lisson's	s Capsı	ıle	(ii) Duodenum		(1) Directional Selection	(2) Stabilizing Selectior	
	- · · · · · · · · · · · · · · · · · · ·		(iii) Small intestine		(3) Disruptive Selection	(4) Cyclical Selection			
	(d) Brunner's Glands (iv) Liver		Ans.						
	Sele	ct the	correc	t optio	n from the following :	154.	Conversion of glucose to	glucose-6-phosphate, the	
		(a)	(b)	(c)	(d)		first irreversible reaction	of glycolysis, is catalyzed	
	(1)	(iii)	(i)	(ii)	(iv)		by :		
	(2)	(ii)	(iv)	(i)	(iii)		(1) Aldolase	(2) Hexokinase	
	(3)	(iii)	(iv)	(i)	(ii)		(3) Enolase	(4) Phosphofructokinase	
	(4)	(iii)	(iv) (ii)	(i)	(iv)	Ans.	、		
1		(111)	(11)	(1)	(10)	155.	Which of the following st		
Ans.		-11 1	. 11	- 1			(1) Cornea is an external, t	• •	
150.	disea		Ollowir	ng norr	nones with the respective		proteinacious coverin		
		isulin			(i) Addison's disease		(2) Cornea consists of de elastin and can repa		
	• •		_				(3) Cornea is convex, trans		
		hyroxir			(ii) Diabetes insipidus		vascularised.		
		orticoio			(iii) Arcomegaly		(4) Cornea consists of der	ise matrix of collagen and	
	(d) G	irowth	Hormo	one	(iv) Goitre		is the most sensitive	-	
					(v) Diabetes mellitus	Ans.		portion of the eyer	
	Sele	ct the	correc	t optio	n.		Which of the following	ecological pyramids is	
		(a)	(b)	(c)	(d)		generally inverted ?		
	(1)	(v)	(i)	(ii)	(iii)		(1) Pyramid of numbers i	n grassland	
	(2)	(ii)	(iv)	(iii)	(i)		(2) Pyramid of energy		
	(3)	(v)	(iv)	(i)	(iii)		(3) Pyramid of biomass in	n a forest	
	(4)	(ii)	(iv)	(i)	(iii)		(4) Pyramid of biomass is	n a sea	
	(3)					Ans.	(4)		

6

- **157.** Consider the following statements :
 - **(A)** Coenzyme or metal ion that is tightly bound to enzyme protein is called prosthetic group.
 - **(B)** A complete catalytic active enzyme with its bound prosthetic group is called apoenzyme. Select the **correct** option.
 - (1) Both **(A)** and **(B)** are true.
 - (2) (A) is true and (B) is false.
 - (3) Both (A) and (B) are false.
 - (4) (A) is false and (B) is true.

- **158.** Due to increasing air-borne allergens and pollutants, many people in urban areas are suffering from respiratory disorder causing wheezing due to :
 - (1) benign growth on mucous lining of nasal cavity.
 - (2) inflammation of bronchi and bronchioles.
 - (3) proliferation of fibrous tissues and damage of the alveolar walls.
 - (4) reduction in the secretion of surfactants by pneumocytes.

Ans. (2)

159. Which one of the following statements regarding post-fertilization development in flowering plants is **incorrect** ?

- (1) Ovary develops into fruit
- (2) Zygote develops into embryo
- (3) Central cell develops into endosperm
- (4) Ovules develop into embryo sac

Ans. (4)

- 160. Phloem in gymnosperms lacks :
 - (1) Albuminous cells and sieve cells
 - (2) Sieve tubes only
 - (3) Companion cells only
 - (4) Both sieve tubes and companion cells

Ans. (4)

- **161.** It takes very long time for pineapple plants to produce flowers. Which combination of hormones can be applied to artificially induce flowering in pineapple plants throughout the year to increase yield?
 - (1) Auxin and Ethylene
 - (2) Gibberellin and Cytokinin
 - (3) Gibberellin and Abscisic acid
 - (4) Cytokinin and Abscisic acid
- Ans. (1)

- $\label{eq:162.1} \textbf{162.} \ \text{Persistent nucellus in the seed is known as}:$
 - (1) Chalaza (2) Perisperm
 - (4) Tegmen

Ans. (2)

163. Cells in G_0 phase:

(3) Hilum

- (1) exit the cell cycle
 - (2) enter the cell cycle
 - (3) suspend the cell cycle
 - (4) terminate the cell cycle

Ans. (1)

164. Match Column - I with Column - II.

Column - I	Column - II
(a) Saprophyte	(i) Symbiotic association
	of fungi with plant roots
(b) Parasite	(ii) Decomposition of
	dead organic materials
(c) Lichens	(iii) Living on living
	plants or animals
(d) Mycorrhiza	(iv) Symbiotic association
	of algae and fungi
Chasse the servest	a anno a fua ma tha a mati a ma air ran

Choose the **correct** answer from the options given below :

	(a)	(b)	(c)	(d)
(1)	(i)	(ii)	(iii)	(iv)
(2)	(iii)	(ii)	(i)	(iv)
(3)	(ii)	(i)	(iii)	(iv)
(4)	(ii)	(iii)	(iv)	(i)

Ans. (4)

- **165.** Which would be the heart rate of a person if the cardiac output is 5L, blood volume in the ventricles at the end of diastole is 100 mL and at the end of ventricular systole is 50 mL?
 - (1) 50 beats per minute
 - (2) 75 beats per minute
 - (3) 100 beats per minute
 - (4) 125 beats per minute

Ans. (3)

- **166.** What triggers activation of protoxin to active Bt toxin of *Bacillus thuringiensis* in boll worm?
 - (1) Body temperature
 - (2) Moist surface of midgut
 - (3) Alkaline pH of gut
 - (4) Acidic pH of stomach

Ans. (3)

167.	The ciliated epithelial cells are required to move
	particles or mucus in a specific direction. In humans,
	these cells are mainly present in :

- (1) Bile duct and Bronchioles
- (2) Fallopian tubes and Pancreatic duct
- (3) Eustachian tube and Salivary duct
- (4) Bronchioles and Fallopian tubes

Ans. (4)

- 168. Which of the statements given below is not true about formation of Annual Rings in trees?
 - (1) Annual ring is a combination of spring wood and autumn wood produced in a year.
 - (2) Differential activity of cambium causes light and dark bands of tissue - early and late wood respectively
 - (3) Activity of cambium depends upon variation in climate.
 - (4) Annual rings are not prominent in trees of temperate region.

Ans. (4)

- **169.** What is the fate of the male gametes discharged in the synergid?
 - (1) One fuses with the egg, other(s) degenerate(s) in the synergid.
 - (2) All fuse with the egg.
 - (3) One fuses with the egg, other(s) fuse(s) with synergid nucleus.
 - (4) One fuses with the egg and other fuses with central cell nuclei.

Ans. (4)

170. Match the following genes of the Lac operon with their respective products.

(a	a)	i gene		(i)	β -galactosidase
(ł	5)	z gene		(ii)	Permease
(0	c)	a gene		(iii)	Repressor
(0	d)	y gene		(iv)	Transacetylase
S	Sele	ect the corre	ect option	۱.	
		(a)	(b)	(c)	(d)
(]	1)	(i)	(iii)	(ii)	(iv)
(2	2)	(iii)	(i)	(ii)	(iv)
(3	3)	(iii)	(i)	(iv)	(ii)
(4	1)	(iii)	(iv)	(i)	(ii)
. (:	3)				

- **171.** Select the correct sequence of organs in the alimentary canal of cockroach starting from mouth:
 - (1) Pharynx \rightarrow Oesophagus \rightarrow Crop \rightarrow Gizzard \rightarrow $Ileum \rightarrow Colon \rightarrow Rectum$
 - (2) Pharynx \rightarrow Oesophagus \rightarrow Gizzard \rightarrow Crop \rightarrow Ileum \rightarrow Colon \rightarrow Rectum
 - (3) Pharynx \rightarrow Oesophagus \rightarrow Gizzard \rightarrow Ileum \rightarrow $Crop \rightarrow Colon \rightarrow Rectum$
 - (4) Pharynx \rightarrow Oesophagus \rightarrow Ileum \rightarrow Crop \rightarrow $Gizzard \rightarrow Colon \rightarrow Rectum$

Ans. (1)

172. Match the hominids with their correct brain size :

(a)	(h)	(a)	(4)	
Select the correct option.				
(d) Homo sap	iens	(iv)	1400 сс	
(c) Homo ered	ctus	(iii)	650-800 сс	
(b) Homo nea	nderthaler	<i>nsis</i> (ii)	1350 сс	
(a) Homo hab	vilis	(i)	900 сс	

(ii)
(iv)
(ii)
(ii)

Ans. (3)

- **173.** Identify the **correct** pair representing the causative agent of typhoid fever and the confirmatory test for typhoid.
 - (1) Plasmodium vivax/UTI test.
 - (2) Streptococcus pneumoniae/Widal test
 - (3) Salmonella typhi/Anthrone test
 - (4) Salmonella typhi/Widal test

Ans. (4)

- **174.** How does steroid hormone influence the cellular activities?
 - (1) Changing the permeability of the cell membrane.
 - (2) Binding to DNA and forming a gene-hormone complex.
 - (3) Activating cyclic AMP located on the cell membrane.
 - (4) Using aquaporin channels as second messenger.

Ans. (2)

175. Tidal Volume and Expiratory Reserve Volume of an athlete is 500 mL and 1000 mL respectively. What will be his Expiratory Capacity if the Residual Volume is 1200 mL?

(1) 1500 mL	(2) 1700 mL
(3) 2200 mL	(4) 2700 mL

- (4) 2700 mL
- Ans. (1)

176.	Which of the following is a commercial blood							
	cholesterol lowering agent?							
	(1) Cyclosporin A			(2) statin				
	(3) Streptokinase			(4) Lipases				
Ans.	(2)	(2)						
177.	Wh	Which of the following statements regarding						
	mitochondria is incorrect ?							
	(1)	(1) Outer membrane is permeable to monomers of						
		carbohydrates fats and proteins.						
	(2)	(2) Enzymes of electron transport are embedded						
	in outer membrane.							
	(3)	(3) Inner membrane is convoluted with infoldings.						
	(4)	4) Mitochondrial matrix contains single circular						
		DNA molecule and ribosomes.						
Ans.	(2)	(2)						
178.	Ma			th Column -	·II			
		Column - I		Column - II				
	(a)	P-wave		(i) Depolarisation of				
				ventricles				
	(b)	QRS compl	ex	(ii) Repolarisation of				
		-		ventricles				
	• •	T-wave		(iii) Coronary ischemia				
	(d)	Reduction in the size		· · ·	· · · ·			
		of T-wave		atria				
	C 1	(v) Repolarisation of atria						
	Sel	ect the corr	-		(1)			
	(1)	(a)	(b)	(c)	(d)			
	• •	(iv)	(i)	(ii)	(iii) (-)			
		(i∨)	(i)	(ii)	(v) (;;;)			
	(3)		(i)	(v)	(iii) (i)			
•	(4)	(11)	(iii)	(v)	(iv)			

Ans. (1)

- **179.** Select the **correct** group of biocontrol agents.
 - (1) *Bacillus thuringiensis*, Tobacco mosaic virus, Aphids
 - (2) Trichoderma, Baculovirus, Bacillus thuringiensis
 - (3) Oscillatoria, Rhizobium, Trichoderma
 - (4) Nostoc, Azospirillium, Nucleopolyhedrovirus

Ans. (2)

- **180.** Select **correctly** written scientific name of Mango which was first described by Carolus Linnaeus:
 - (1) Mangifera indica Car. Linn.
 - (2) Mangifera indica Linn.
 - (3) Mangifera indica
 - (4) Mangifera Indica