
JUPITER ACADEMY

NEET UG PHY - SAMPLE PAPER - 12 - 01 NEET-UG - PHYSICS

Time Allowed : 60 mins

Section A

- An electron moves through a small distance in a uniform electric field. The magnitude of electric field is 2× 10⁴ NC ⁻¹. Now, if the direction of field is reversed keeping the magnitude same and a proton moves through the same distance, then which of the following options is correct?
 [4]
 - a) The time of travel will be more in the case of the proton.
 - b) The time of travel will be independent of charge.
 - c) The time of travel will be more in case of electron.
 - d) The time of travel will be the same in both cases.
- Two positive ions, each carrying a charge q, are separated by a distance d. If F is the force of repulsion between the ions, the number of electrons missing from each ion will be: (e being the charge on an electron) [4]
 - a) $\sqrt{\frac{4\pi\varepsilon_0 F e^2}{d^2}}$ b) $\frac{4\pi\varepsilon_0 F d^2}{e^2}$ c) $\sqrt{\frac{4\pi\varepsilon_0 F d^2}{e^2}}$ d) $\frac{4\pi\varepsilon_0 F d^2}{q^2}$
- 3) Two condensers, one of capacity C and other of capacity $\frac{C}{2}$ are connected to a V volt battery, as shown in the figure. The work done in charging fully both the condensers is:

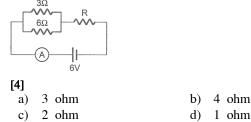
4) What is not true for equipotential surface for uniform electric field? [4]

b) 2 CV^2

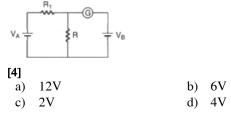
d)

 $\frac{1}{4}CV^2$

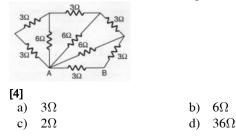
- a) Work done is zero
- b) Electric lines are perpendicular to equipotential surface
- c) Equipotential surface is spherical
- d) Equipotential surface is flat
- 5) In the basic CsCl crystal structure, Cs⁺ and Cl⁻ ions are arranged in a bcc configuration as shown in the figure. The net electrostatic force exerted by the eight Cs⁺ ions on the Cl⁻ ions is:



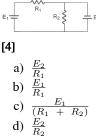
[4]


a) $\frac{1}{4\pi\varepsilon_0} \frac{16e^2}{3a^2}$

b) $\frac{1}{4\pi\varepsilon_0}\frac{4e}{3a}$ c) Zero


- d) $\frac{1}{4\pi\varepsilon_0} \frac{32e^2}{3a^2}$
- 6) If the ammeter in the given circuit reads 2 A, the resistance R is:

7) In the circuit shown the cells A and B have negligible resistances. For V_A - 12 volt, $Rx = 500\Omega$, $R = 100\Omega$, the galvanometer (G) shows no deflection. The value of V_B is:


8) The resistances in the following figure are in ohm. Then, the effective resistance between points A and B is:

9) The current in the branch CD in the circuit shown below will be:

- (a) $L_1 + l_3$ (b) $L_1 - l_3$ (c) $L_2 + l_3$ (d) $L_1 + l_2$
- 10) Two resistances R_1 and R_2 are joined, as shown in the following figure, to two batteries of emfs E_1 and E_2 . If E_2 is short circuited, the current through R_1 is:

11) An electron is shot in steady electric and magnetic fields

Maximum Marks : 200

 $\frac{32e^2}{2}$

such that its velocity v, electric field E and magnetic field B are mutually perpendicular. The magnitude of E is 1 volt/cm and that of B is 2T. Now, it happens that the Lorentz force cancels with the electrostatic force on the electron; then the velocity of the electron is: [4]

a)	0.5 cm/s	b)	2 cm/s
c)	50 m/s	d)	200 m/s

- 12) An electron having mass (9.1 \times 10 $^{-31}$ kg) and charge $(1.6 \times 10^{-19} \text{ C})$ moves in a circular path of radius 0.5 m with a velocity 10^6 m/s in a magnetic field. Strength of the magnetic field is: [4]
 - a) 5.6×10^{-6} T b) 3.6× 10⁻⁶ T c) 2.8×10^{-6} T d) $1.13 \times$ 10 ^{- 5} T
- 13) The magnetic material which moves from stronger to weaker parts of a magnetic field is known as: [4]
 - a) Paramagnetic b) Anti - ferromagnetic
 - d) Diamagnetic c) Ferromagnetic
- 14) A magnet of length 0.1 m and pole strength 10⁻⁴ A m is kept in a magnetic field of 30 Wb/m² at an angle 30°. The couple acting on it is $__ \times 10^{-4}$ Nm: [4]
 - b) 7.5 a) 4.5
 - c) 1.5 d) 3.0
- 15) Two conducting coils are placed coaxially. A cell is placed in one coil, then they will:
 - i. Attract each other
 - ii. Repel each other
 - iii. Both of attracting each other and repel each other iv. They will not experience any force
 - [4]

I and ii b) Iv and i a) c) Iii and iv d) Only ii

16) A coil of area 0.1 m² has 500 turns. After placing the coil in a magnetic field of strength 4 \times 10⁻⁴ wb/m², it is rotated through 90° in 0.1 sec. The average emf induced in the coil is: [4] a) 0.2 volt b) 0.1 volt

<i>u</i>)	0.2 (011	0)	0.1 /010
c)	0.012 volt	d)	0.05 volt

- 17) The potential difference V across and the current I flowing through an instrument in an AC circuit are given by: $V = 5 \cos \omega t$ volt and $I = 2 \sin \omega t$ amp The power dissipated in the instrument is: [4]
 - a) 10 watt b) 2.5 watt
 - c) 5 watt d) Zero watt
- 18) The power dissipated in an AC circuit is zero if the circuit is: [4]
 - a) Either purely inductive or purely capacitive
 - b) Purely capacitive only
 - c) Purely inductive only
 - d) Purely resistive
- 19) In an AC circuit, the e.m.f. and the current at any instant are respectively given by
 - $E = E_0 \sin \omega t$ and $I = I_0 \sin (\omega t \phi)$

The average power in the circuit over one cycle of AC is [4]

- a) $\frac{E_0 I_0}{2} sin\phi$ b) $E_0 I_0 / 2$ c) $\frac{E_0 I_0}{2} cos\phi$

- d) $E_0 \overline{I}_0$
- 20) The force exerted by the sunlight of intensity 1350 Wm - ²reflected from a reflecting surface of an aluminum sheet of area 10^4 m^2 is: [4]

a) 45 N	b)	0.18 N
---------	----	--------

- 0.72 N d) 0.09 N c)
- 21) The correct sequence of the increasing wavelength of the given radiation sources is:
 - i. Radioactive sources, X ray tube, sodium vapour lamp
 - ii. Radioactive sources, X ray tube, sodium vapour lamp, crystal oscillator
 - iii. X ray tube, radioactive sources, sodium vapour lamp, crystal oscillator
 - iv. X ray tube, crystal oscillator, radioactive sources, sodium vapour lamp
 - [4]
 - Only ii b) Iii and iv a)
 - c) Iv and i d) I and ii
- 22) In an electromagnetic wave in free space the root means the square value of the electric field is $E_{rms} = 6V/m$. The peak value of the magnetic field is: [4]
 - a) 2.83×10^{-8} T b) 0.70× 10⁻⁸ T

c) 44.23×10^{-8} T d) 1.41× 10⁻⁸ T

- 23) Which of the following is incorrect statement? [4]
 - a) The magnification produced by a convex mirror is always less than one
 - b) A virtual, erect, same sized image can be obtained using a plane mirror
 - c) A real, inverted, same sized image can be formed using a convex mirror
 - d) A virtual, erect, magnified image can be formed using a concave mirror
- 24) A point object is placed at a distance of 10 cm and its real image is formed at a distance of 20 cm from a concave mirror. If the object is moved by 0.1 cm towards the mirror, the image will shift by about: [4]
 - a) 0.8 cm away from the mirror
 - b) 0.4 cm away from the mirror
 - c) 0.4 cm towards the mirror
 - d) 0.8 cm towards the mirror
- 25) In Young's double slit experiment, the wavelength of light X = 4×10^{-7} m and separation between the slit is d = 0.1 mm. If the fringe width is 4 mm, then the separation between the slits and screen will be: [4]
 - a) 10Å
 - b) 1 m
 - c) 10^6 m
 - d) 100 mm
- 26) The distinguishable characteristic of a monochromatic light wave irrespective of medium is: [4]
 - b) Velocity a) Wavelength
 - c) Frequency d) Intensity
- 27) When light of wavelength 300 nm falls on a photoelectric emitter, photoelectrons are liberated. For another emitter, light of wavelength 600 nm is sufficient for liberating photoelectrons. The ratio of the work function of the two emitters is: [4]
 - a) 2 : 1 b) 4 : 1
 - c) 1 : 4 d) 1 : 2

28) Consider the following statements:

- i. The energy E of a photon of frequency v is E =hv, where h is Planck's constant.
 - ii. The momentum p of a photon is $p = \frac{h}{\lambda}$, where λ is the wavelength of the photon.

From the above statements, one may conclude that the wave velocity of light is equal to: [4]

- a) $(\frac{E}{p})^2$ b) 3×10^8 m/sec c) Ep d) $\frac{E}{p}$
- 29) Given that a photon of light of wavelength 10,000 angstrom has an energy equal to 1.23 eV. When light of wavelength 5000 angstrom and intensity I_0 falls on a photoelectric cell, the saturation current is 0.40×10^{-6} ampere and the stopping potential is 1.36 volt; if the intensity of light is made $4I_0$, if the cathode and the anode are kept at the same potential, the emitted electrons: [4]
 - a) All have the minimum KE equal to 1.36 eV
 - b) All have the same KE equal to 1.36 eV
 - c) All have the average KE equal to $(\frac{1.36}{2})$ eV
 - d) All have the maximum KE equal to $\tilde{1}.36$ eV
- 30) A continuous band of radiation having all wavelengths from about $1000\overset{o}{A}$ to $10,000\overset{o}{A}$ is passed through a gas of monoatomic hydrogen. In the emission spectrum, one can observe the entire: [4]
 - a) Lyman series b) Balmer series
 - c) Pfund series d) Paschen series
- 31) The ratio (in SI units) of magnetic dipole moment to that of the angular momentum of electron of mass m kg and charge e coulomb in Bohr's orbit of a hydrogen atom is:[4]

a)	$\frac{e}{m}$	b)	$\frac{2e}{m}$ $\frac{4e}{m}$
c)	$\frac{e}{2m}$	d)	$\frac{4e}{m}$

32) $_{92}U^{238}$ on absorbing a neutron goes over to $_{92}U^{239}$. This nucleus emits an electron to go over to neptunium which on further emitting an electron goes over to plutonium. The plutonium nucleus can be expressed as: [4]

a)	$_{92}Pu^{240}$	b)	$_{94}$ Pu ²³⁹
c)	$_{92}Pu^{239}$	d)	93Pu ²⁴⁰

- 33) 10^{-3} kg of a radioactive isotope of atomic mass 226 emits $3.72 \times 10^{10} \alpha$ - particles in a second. If 4.2×10^{-2} J of energy is released in 1 hour in this process, the average energy of the α - particle is: [4] a) 1.42 MeV b) 19.6 MeV c) 9.2 MeV d) 1.96 MeV
- 34) In CE mode, the input characteristics of a transistor is the variation of: [4]
 - a) I_E against V_c
 - b) I_C against V_{CE} at constant V_{BE}
 - c) I_B against I_C
 - d) I_B against V_{be} at constant V_{CE}
- 35) For the determination of the co efficient of viscosity of a given liquid, a graph between square of the radius of the spherical steel balls and their terminal velocity is plotted. The slope of the graph is given by [4]
 - a) $\frac{V^2}{r}$
 - b) $\frac{V}{r}$
 - c) $\frac{r}{r^2}$
 - d) $\frac{r^2}{V}$

Section B

36) Assertion (A): Surface charge density of an irregularly shaped conductor in non - uniform.
Because (B): Surface density is defined as shares per unit

Reason (R): Surface density is defined as charge per unit area. [4]

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 37) Assertion: A parallel plate capacitor is connected across battery through a key. A dielectric slab of dielectric constant K is introduced between the plates. The energy which is stored becomes K times.

Reason: The surface density of charge on the plate remains constant or unchanged. [4]

- a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- c) Assertion is correct statement but reason is wrong statement.
- d) Assertion is wrong statement but reason is correct statement.
- 38) Assertion (A): Bending a wire does not affect electrical resistance.

Reason (R): Resistance of wire is proportional to the resistivity of the material. [4]

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 39) Assertion (A):Ohm's law is applicable for all conducting elements.

Reason (R):Ohm's law is a fundamental law. [4]

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 40) **Assertion:** The resultant magnetic field of circular loop is due to x component.

Reason: In circular loop of wire, perpendicular components of magnetic field at some distance from centre of loop turned over the whole loop, the result is zero. [4]

- a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- c) Assertion is correct statement but reason is wrong statement.
- d) Assertion is wrong statement but reason is correct statement.
- Assertion: Paramagnetism is explained by Domain theory. Reason: Susceptibility of a diamagnetic substance is independent of temperature. [4]
 - a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
 - b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
 - c) Assertion is correct statement but reason is wrong statement.

- d) Assertion is wrong statement but reason is correct statement.
- 42) Assertion (A): If current changes through a circuit, eddy currents are induced in the nearby iron plates.

Reason (R):Due to a change of current, the magnetic flux through iron plate changes. [4]

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 43) **Assertion (A):**It is advantageous to transmit electric power at high voltage.

Reason (R): High voltage implies high current. [4]

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 44) Assertion (A): Velocity of light is constant in all media.Reason (R): Light is electromagnetic wave which have constant velocity in all media. [4]
 - a) Both A and R are true and R is the correct explanation of A.
 - b) Both A and R are true but R is not the correct explanation of A.
 - c) A is true but R is false.
 - d) Both A and R are false.
- 45) **Assertion (A):** Convergent lens property of converging remain same in all mediums.

Reason (R): Property of lens whether the ray is diverging or converging is independent of the surrounding medium. **[4]**

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 46) Assertion (A): If the whole apparatus of Young's experiment is immersed in liquid, the fringe width will decrease.Reason (R): The wavelength of light in water is more than that of air. [4]
 - a) Both A and R are true and R is the correct explanation of A.
 - b) Both A and R are true but R is not the correct explanation of A.

- c) A is true but R is false.
- d) A is false but R is true.
- 47) Assertion (A): In Young's double slit experiment if wavelength of incident monochromatic light is just doubled, number of bright fringe on the screen will increase.
 Reason (R):Maximum number of bright fringe on the screen is inversely proportional to the wavelength of light used. [4]
 - a) Both A and R are true and R is the correct explanation of A.
 - b) Both A and R are true but R is not the correct explanation of A.
 - c) A is true but R is false.
 - d) A is false but R is true.
- 48) **Assertion (A):**In process of photoelectric emission, all emitted electrons do not have same kinetic energy.

Reason (R): If radiation falling on the photosensitive surface of metal consists of different wavelengths then energy acquired by electrons absorbing photons of different wavelengths shall be different. [4]

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 49) Assertion (A):The electron in the hydrogen atom passes from energy level n = 4 to the n = 1 level. The maximum and a minimum number of photons that can be emitted is six and one respectively.

Reason (R): The photons are emitted when an electron makes a transition from the higher energy state to the lower energy state. [4]

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 50) Assertion (A):The heavier nuclei tend to have larger N/Z ratio because neutron does not exert electric force.

Reason (R):Coulomb forces have longer range compared to the nuclear force. [4]

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.